分析 由已知可得F1,F2,B1,B2四点的坐标,利用中点坐标公式可得C.由$\overrightarrow{{B}_{1}{F}_{1}}$•$\overrightarrow{{B}_{1}{F}_{2}}$=2,且CF1⊥B1F2,利用数量积运算性质即可得出.
解答 解:F1(-c,0),F2(c,0),B1(0,b),B2(0,-b),C$(\frac{c}{2},\frac{b}{2})$.
$\overrightarrow{{B}_{1}{F}_{1}}$=(-c,-b),$\overrightarrow{{B}_{1}{F}_{2}}$=(c,-b),$\overrightarrow{C{F}_{1}}$=$(-\frac{3}{2}c,-\frac{b}{2})$,
∵$\overrightarrow{{B}_{1}{F}_{1}}$•$\overrightarrow{{B}_{1}{F}_{2}}$=2,且CF1⊥B1F2,
∴-c2+b2=2,$\overrightarrow{C{F}_{1}}$$•\overrightarrow{{B}_{1}{F}_{2}}$=$-\frac{3}{2}{c}^{2}$+$\frac{1}{2}{b}^{2}$=0,又a2=b2+c2,
联立解得:a=2,b2=3,c=1.
∴椭圆的标准方程为:$\frac{x^2}{4}+\frac{y^2}{3}=1$.
故答案为:$\frac{x^2}{4}+\frac{y^2}{3}=1$.
点评 本题考查了椭圆的标准方程及其性质、数量积运算性质、向量垂直与数量积的关系、中点坐标公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | $\sqrt{2}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com