精英家教网 > 高中数学 > 题目详情

设锐角三角形ABC的内角A,B,C的对边分别为,.

1)求角的大小;

2)若,求的面积及.

 

【答案】

1;2.

【解析】

试题分析:1)由正弦定理,有,那么可以将条件转化成角的关系:,得到,再由锐角三角形得到;(2)已知,夹角,可直接利用正弦定理的面积公式,求出面积为;又由余弦定理:,可得:,所以.

试题解析:1,由正弦定理

.

由于,

故有

又因为是锐角,所以:.

2依题意得:.

所以由余弦定理可得:

.

考点:正弦定理,余弦定理.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA
(Ⅰ)求B的大小;
(Ⅱ)求cosA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA
(Ⅰ)求B的大小;
(Ⅱ)若a=3
3
,c=5,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,已知a=
3
b
sinB
=2

(1)求A的大小;
(2)求
a2+b2-c2
ab
+2cosB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角三角形ABC的角A,B,C所对的边分别为a,b,c,已知a2+b2-c2=ab.
(1)求∠C的度数;  (2)求∠A的取值范围; (3)求sinA+sinB的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,若
m
=(b,  2csinB),  
n
=(cosB
,sinC),且
m
n

(Ⅰ)求B的大小;
(Ⅱ)求sinA+sinC的取值范围.

查看答案和解析>>

同步练习册答案