(本小题满分13分)已知圆
经过
、
两点,且圆心在直线
上.
(Ⅰ)求圆
的方程;
(Ⅱ)若直线
经过点
且与圆
相切,求直线
的方程.
(Ⅰ)
. (Ⅱ)
。
【解析】本试题主要是考查了直线与圆的位置关系的运用。
(1)设圆C的方程为(x-a)2+(y-b)2=r2,r>0,,依题意得: ![]()
,解出待定系数,可得圆 C的方程.(2)当直线l的斜率存在时,可设直线l的方程,由圆心到直线的距离等于半径解出k值,从而得到直线l的方程.
解:(Ⅰ)方法1:设所求圆的方程为
.依题意,可得………2分
,……………………4分
解得![]()
∴所求圆的方程为
.…………………7分
方法2:由已知,AB的中垂线方程为:
. …………………2分
由
得
.所求圆的圆心为C(2,4).…………………………2分
.
∴所求圆的方程为
.……………………7分
(Ⅱ)直线CB的斜率为2,所以所求切线的斜率为
.………………10分
所求切线方程为:
,即
………………13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com