精英家教网 > 高中数学 > 题目详情
平面内给定三个向量
a
=(0,2),
b
=(-1,2),
c
=(3,3)
(
a
+k
c
)
(2
a
-
b
)
,则实数k=
 
分析:首先求出
a
+k
c
(2
a
-
b
)
,然后利用利用两个向量平行的坐标的关系,可得方程,求解可得结果
解答:解∵(
a
+k
c
)∥(2
a
-
b
)

a
+k
c
=(3k,2+3k),(2
a
-
b
)
=(1,2),
∴3k×2-1×(2+3k)=0,∴k=
2
3

故答案为
2
3
点评:本题考查平行向量,要注意向量平行的条件,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2)
b
=(-1,2)
c
=(4,1)
,回答下列三个问题:
(1)试写出将
a
b
c
表示的表达式;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求实数k的值;
(3)若向量
d
满足(
d
+
b
)∥(
a
-
c
)
,且|
d
-
a
|=
26
,求
d

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)
(1)求|3
a
-
c
|
(2)若(
a
+k
c
)∥(2
b
-
a
)
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(0,2),
b
=(-1,2),
c
=(3,3)

(1)求|2
a
+
b
-
c
|;
(2)若(
a
+k
c
)∥(2
a
-
b
)
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)

(1)求|3
a
+
b
-2
c
|
的值;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求实数k的值.

查看答案和解析>>

同步练习册答案