精英家教网 > 高中数学 > 题目详情

函数内(    )

A.只有最大值               B.只有最小值  

C.只有最大值或只有最小值   D.既有最大值又有最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)函数y=x+
a
x
(a是常数,且a>0)
有如下性质:①函数是奇函数;②函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
2b
x
(x>0)的值域是[6,+∞),求b的值;
(2)判断函数y=x2+
c
x2
(常数c>0)在定义域内的奇偶性和单调性,并加以证明;
(3)对函数y=x+
a
x
和y=x2+
c
x2
(常数c>0)分别作出推广,使它们是你推广的函数的特例.判断推广后的函数的单调性(只需写出结论,不要证明).

查看答案和解析>>

科目:高中数学 来源:2014届湖南省四校高三上学期第三次联考理科数学试卷(解析版) 题型:填空题

函数的定义域为D,若存在闭区间[a,b]D,使得函数满足:(1)在[a,b]内是单调函数;(2)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=的“美丽区间”.下列函数中存在“美丽区间”的是           . (只需填符合题意的函数序号) 

①、;         ②、

③、;         ④、.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三第四次(4月)周测文科数学试卷(解析版) 题型:填空题

函数的定义域为D,若存在闭区间[a,b]D,使得函数满足:

(1) 在[a,b]内是单调函数;(2) 在[a,b]上的值域为[2a,2b],则称区间[a,b]为的“和谐区间”.下列函数中存在“和谐区间”的是            (只需填符合题意的函数序号)

; ②; ③; ④

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三第三次(3月)周测理科数学试卷(解析版) 题型:填空题

函数的定义域为D,若存在闭区间[a,b]D,使得函数满足:

(1) 在[a,b]内是单调函数;

(2)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=的“和谐区间”.

下列函数中存在“和谐区间”的是            (只需填符合题意的函数序号).

;②;③;④.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科)函数y=x+
a
x
(a是常数,且a>0)
有如下性质:①函数是奇函数;②函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
2b
x
(x>0)的值域是[6,+∞),求b的值;
(2)判断函数y=x2+
c
x2
(常数c>0)在定义域内的奇偶性和单调性,并加以证明;
(3)对函数y=x+
a
x
和y=x2+
c
x2
(常数c>0)分别作出推广,使它们是你推广的函数的特例.判断推广后的函数的单调性(只需写出结论,不要证明).

查看答案和解析>>

同步练习册答案