如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。
(1) 证明:直线EE//平面FCC;
(2) 求二面角B-FC-C的余弦值。
解法一:(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1,
连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB//CD,
所以CDA1F1,A1F1CD为平行四边形,所以CF1//A1D,
又因为E、E分别是棱AD、AA的中点,所以EE1//A1D,
所以CF1//EE1,又因为平面FCC,平面FCC,
所以直线EE//平面FCC.
(2)因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角, 在△BCF为正三角形中,,在Rt△CC1F中, △OPF∽△CC1F,∵∴,
在Rt△OPF中,,,所以二面角B-FC-C的余弦值为.
解法二:(1)因为AB=4, BC=CD=2, F是棱AB的中点,
所以BF=BC=CF,△BCF为正三角形, 因为ABCD为
等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M,
连接DM,则DM⊥AB,所以DM⊥CD,
以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,
,则D(0,0,0),A(,-1,0),F(,1,0),C(0,2,0),
C1(0,2,2),E(,,0),E1(,-1,1),所以,,设平面CC1F的法向量为则所以取,则,所以,所以直线EE//平面FCC.
(2),设平面BFC1的法向量为,则所以,取,则,
,,
所以,由图可知二面角B-FC-C为锐角,所以二面角B-FC-C的余弦值为.
【命题立意】:本题主要考查直棱柱的概念、线面位置关系的判定和二面角的计算.考查空间想象能力和推理运算能力,以及应用向量知识解答问题的能力.
科目:高中数学 来源: 题型:
3 |
2 |
A、30° | B、45° |
C、60° | D、90° |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
5 |
查看答案和解析>>
科目:高中数学 来源: 题型:022
如图,在直四棱柱A1B1C1D1—ABCD中,当底面四边形ABCD满足条件____ (或任何能推导出这个条件的其他条件,例如ABCD是正方形、菱形等)时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)
查看答案和解析>>
科目:高中数学 来源:数学教研室 题型:022
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com