精英家教网 > 高中数学 > 题目详情
方程f(x)的根称为函数f(x)的零点,函数f(x)=ax3+bx2+cx+d,(a≠0),若已知函数y=3ax3+2bx2+cx的图象如图,且f(x1)f(x2)≤0,则函数f(x)的零点的个数是(  )
分析:函数f(x)=ax3+bx2+cx+d(a≠0),的导数为:f′(x)=3ax2+2bx+c,联系函数y=3ax3+2bx2+cx=x(3ax2+2bx+c)的图象可知,f′(x)=3ax2+2bx+c,的两个零点是:x1、x2,根据导数的几何意义可得函数f(x)的极值点分布在x轴的两侧(或者其中之一在x轴上)结合图象可得函数f(x)的零点个数.
解答:解:函数f(x)=ax3+bx2+cx+d(a≠0),的导数为:
f′(x)=3ax2+2bx+c,
又函数y=3ax3+2bx2+cx=x(3ax2+2bx+c)的图象如图所示,
由图可知,f′(x)=3ax2+2bx+c,的两个零点是:x1、x2
根据导数的几何意义可得:函数f(x)的极值点是:x1、x2
又f(x1)f(x2)≤0,
说明函数f(x)的极值点分居在x轴的两侧(或者其中之一在x轴上)
则函数f(x)的零点个数是:2或3.
故选C.
点评:本题考查函数的零点,三次函数的图象,以及利用图象解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函数g(x)的不动点x1,x2
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1
an-x2
}
是等比数列,并求
lim
n→∞
an

(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

12、方程f(x)=0的根称为函数,f(x)的零点.函数f(x)=ax3+bx2+cx+d(a≠0),函数y=3ax3+2bx2+cx的图象如图所示,且f(x1)f(x2)≤0,则函数f(x)的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

9、方程f(x)=0的根称为函数f(x)的零点,定义在上的函数f(x),其导函数f′(x)的图象如图所示,且f(x1)•f(x2)<0,则函数f(x)的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)对于定义域和值域均为[0,1]的函数f(x),定义f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),n=1,2,3,…满足fn(x)=x的点称为f的n阶周期点.设f(x)=
  2x     (0≤x≤
1
2
)
2-2x  (
1
2
<x≤1)
,则(1)方程f(x)=x的正根是
2
3
2
3
;(2)f的2阶周期点的个数是
4
4

查看答案和解析>>

同步练习册答案