精英家教网 > 高中数学 > 题目详情
5.如果一个三角形最大角是最小角的2倍,且三边是连续的自然数,则这个三角形的边长分别为(  )
A.2,3,4B.3,4,5C.4,5,6D.不存在

分析 根据三角形满足的两个条件,设出三边长分别为n-1,n,n+1,三个角分别为α,π-3α,2α,由n-1,n+1,sinα,以及sin2α,利用正弦定理列出关系式,根据二倍角的正弦函数公式化简后,表示出cosα,然后利用余弦定理得到(n-1)2=(n+1)2+n2-2(n-1)n•cosα,将表示出的cosα代入,整理后得到关于n的方程,求出方程的解得到n的值,从而得到三边长的值,

解答 解:设三角形三边是连续的三个自然n-1,n,n+1,三个角分别为α,π-3α,2α,
由正弦定理可得:$\frac{n-1}{sinα}=\frac{n+1}{sin2α}$,
∴cosα=$\frac{n+1}{2(n-1)}$,
再由余弦定理可得:(n-1)2=(n+1)2+n2-2(n+1)n•cosα=(n+1)2+n2-2(n+1)n•$\frac{n+1}{2(n-1)}$,
化简可得:n2-5n=0,解得:n=5或n=0(舍去),
∴n=5,故三角形的三边长分别为:4,5,6
故选C.

点评 本题主要考察正弦定理在解三角形中的应用问题.解决本题的关键在于根据条件得到:(n-1)2=(n+1)2+n2-2(n+1)n•cosα=(n+1)2+n2-2(n+1)n•$\frac{n+1}{2(n-1)}$,化简,得:n2-5n=0,进而求出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如果小明家的瓷都晚报规定在每天下午的4:30~6:30之间的任何一个时间随机地被送到,他一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐,瓷都晚报在晚餐前被送到小明家的概率是$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{4})}^x},x∈[-2017,0)}\\{{4^x},x∈[0,2017]}\end{array}}$,则f(log23)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数(i-1-i)3的虚部为(  )
A.8iB.-8iC.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某高校有正教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本,已知从讲师中抽取人数为16人,那么n=72.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x2+x-lnx在x=a处的切线与直线2x+2y-1=0垂直,则a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)满足f(x+3)-f(x)=0,且f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤1}\\{lo{g}_{2}x,1<x<2}\end{array}\right.$,若函数y=f(x)-$\frac{t}{3}$x(t>0)至少有9个零点,则t的取值范围为(  )
A.(0,$\frac{1}{3}$)B.(0,54-24$\sqrt{5}$]C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数$z=\frac{4-2i}{1+i}$(i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$成立,则双曲线的离心率为(  )
A.4B.$\frac{5}{2}$C.2D.$\frac{5}{3}$

查看答案和解析>>

同步练习册答案