精英家教网 > 高中数学 > 题目详情
某乡镇为了盘活资本,优化组合,决定引进资本拯救出现严重亏损的企业.长年在外经商的王先生为了回报家乡,决定投资线路板厂和机械加工厂.王先生经过预算,如果引进新技术在优化管理的情况下,线路板厂和机械加工厂可能的最大盈利率分别为95%和80%,可能的最大亏损率分别为30%和10%.由于金融危机的影响,王先生决定最多出资100万元引进新技术,要求确保可能的资金亏损不超过18万元.问王先生对线路板厂和机械加工厂各投资多少万元,才能使可能的盈利最大?
【答案】分析:这是一个实际生活中的最优化问题,可根据条件列出线性约束条件和目标函数,画出可行域求解.
解答:解:设王先生分别用x万元、y万元投资线路板厂和机械加工厂两个项目,盈利为z万元.
由题意知
目标函数z=0.95x+0.8y
上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.
作直线l:0.95x+0.8y=0,
并作平行于直线l的一组直线0.95x+0.8y=z,z∈R,
与可行域相交,其中有一条直线经过可行域上的M点,
且与直线0.95x+0.8y=0的距离最大,
这里M点是直线x+y=100和0.3x+0.1y=18的交点.
解方程组
得x=40,y=60
此时z=0.95×40+0.8×60=86(万元).
所以当x=40,y=60时z取得最大值.
答:王先生用40万元投资线路板厂、60万元机械加工厂,
才能在确保亏损不超过18万元的前提下,使可能的盈利最大为86万元.
点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某乡镇为了盘活资本,优化组合,决定引进资本拯救出现严重亏损的企业.长年在外经商的王先生为了回报家乡,决定投资线路板厂和机械加工厂.王先生经过预算,如果引进新技术在优化管理的情况下,线路板厂和机械加工厂可能的最大盈利率分别为95%和80%,可能的最大亏损率分别为30%和10%.由于金融危机的影响,王先生决定最多出资100万元引进新技术,要求确保可能的资金亏损不超过18万元.问王先生对线路板厂和机械加工厂各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题12分)某乡镇为了盘活资本,优化组合,决定引进资本拯救出现严重亏损的企业。长年在外经商的王先生为了回报家乡,决定投资线路板厂和机械加工厂。王先生经过预算,如果引进新技术在优化管理的情况下,线路板厂和机械加工厂可能的最大盈利率分别为95﹪和80﹪,可能的最大亏损率分别为30﹪和10﹪。由于金融危机的影响,王先生决定最多出资100万元引进新技术,要求确保可能的资金亏损不超过18万元.问王先生对线路板厂和机械加工厂各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省名校高三数学一轮复习综合测试(五)(解析版) 题型:解答题

某乡镇为了盘活资本,优化组合,决定引进资本拯救出现严重亏损的企业.长年在外经商的王先生为了回报家乡,决定投资线路板厂和机械加工厂.王先生经过预算,如果引进新技术在优化管理的情况下,线路板厂和机械加工厂可能的最大盈利率分别为95%和80%,可能的最大亏损率分别为30%和10%.由于金融危机的影响,王先生决定最多出资100万元引进新技术,要求确保可能的资金亏损不超过18万元.问王先生对线路板厂和机械加工厂各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高三下学期数学单元测试5-文科 题型:解答题

 某乡镇为了盘活资本,优化组合,决定引进资本拯救出现严重亏损的企业。长年在外经商的王先生为了回报家乡,决定投资线路板厂和机械加工厂。王先生经过预算,如果引进新技术在优化管理的情况下,线路板厂和机械加工厂可能的最大盈利率分别为95﹪和80﹪,可能的最大亏损率分别为30﹪和10﹪。由于金融危机的影响,王先生决定最多出资100万元引进新技术,要求确保可能的资金亏损不超过18万元.问王先生对线路板厂和机械加工厂各投资多少万元,才能使可能的盈利最大?

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案