精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x-1.
(1)求f($\frac{π}{6}$)的值;
(2)求函数f(x)的最小正周期和单调递增区间.

分析 (1)直接代入计算;(2)利用二倍角公式与和差公式对f(x)进行化简,结合正弦函数的单调性列出不等式解出.

解答 解:(1)f($\frac{π}{6}$)=2cos2($\frac{π}{6}$)+$\sqrt{3}$sin$\frac{π}{3}$-1=2×($\frac{\sqrt{3}}{2}$)2+$\sqrt{3}$×$\frac{\sqrt{3}}{2}$-1=2.
(2)f(x)=cos2x+$\sqrt{3}$sin2x=2sin(2x+$\frac{π}{6}$).
∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π.
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ.解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ.
∴f(x)的单调增区间是[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z.

点评 本题考查了三角函数的化简求值与性质.是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图所示,在长方体ABCD-A1B1C1D1中,AD=1,AB=AA1=2,N、M分别是AB、C1D的中点.
(1)求证:NM∥平面A1ADD1
(2)求证:NM⊥平面A1B1M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.试求下列各正弦波的周期、频率和初相角.
(1)3sin314t;
(2)6cos(100πt-45°).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b)的两个焦点F1,F2,点P在椭圆C上,且PF1⊥PF2,|PF1|=2,|PF2|=4,则椭圆C的方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在三棱锥ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点.
(1)证明:A1B1⊥平面PMN;
(2)求三棱锥P-A1MN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(3π-α)=-2sin($\frac{π}{2}$+α),则sinα•cosα等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,既是偶函数,周期为π的是(  )
A.y=sin|x|B.y=|tanx|C.y=|sin2x|D.y=cos(2x+$\frac{x}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知cos($\frac{3π}{2}$-φ)=$\frac{3}{5}$,且|φ|<$\frac{π}{2}$,则tanφ=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆O:x2+y2=4.
(Ⅰ)直线l1过点P(1,2),且与圆O于A、B两点,若AB=2$\sqrt{3}$,求直线l1的方程;
(2)设圆O与x轴相交于P,Q两点,M是圆O上异于P,Q的任意一点,过点A(4,0)且与x轴垂直的直线l2,直线PM交直线l2于点P,直线OM交直线l2于点Q,以PQ为直径的圆总过定点,并求出定点坐标.

查看答案和解析>>

同步练习册答案