精英家教网 > 高中数学 > 题目详情

【题目】已知平面内两个定点和点是动点,且直线,的斜率乘积为常数,设点的轨迹为.

① 存在常数,使上所有点到两点距离之和为定值;

② 存在常数,使上所有点到两点距离之和为定值;

③ 不存在常数,使上所有点到两点距离差的绝对值为定值;

④ 不存在常数,使上所有点到两点距离差的绝对值为定值.

其中正确的命题是_______________.(填出所有正确命题的序号)

【答案】②④

【解析】

由题意首先求得点P的轨迹方程,然后结合双曲线方程的性质和椭圆方程的性质考查所给的说法是否正确即可.

设点P的坐标为:Pxy),

依题意,有:

整理,得:

对于①,点的轨迹为焦点在x轴上的椭圆,且c4a0

椭圆在x轴上两顶点的距离为:26,焦点为:2×48,不符;

对于②,点的轨迹为焦点在y轴上的椭圆,且c4

椭圆方程为:,则,解得:,符合;

对于③,当时,,所以,存在满足题意的实数a,③错误;

对于④,点的轨迹为焦点在y轴上的双曲线,即

不可能成为焦点在y轴上的双曲线,

所以,不存在满足题意的实数a,正确.

所以,正确命题的序号是②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断函数的奇偶性,并说明理由;

2)讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,其图象上任一点都满足.

①函数一定是偶函数;②函数可能既不是偶函数也不是奇函数;

③函数若是偶函数,则值域是;④函数可以是奇函数;

⑤函数的值域是,则一定是奇函数.

其中正确命题的序号是__________(填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]:在直角坐标系中,直线的参数方程为t为参数,),以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为,已知直线与曲线C交于不同的两点AB

(1)求直线的普通方程和曲线C的直角坐标方程;

(2)P(12),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得分,负者得分,平局两人各得分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,已知平面.

(1) 求证:

(2) 求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)令,判断函数的奇偶性,并说明理由;

2)令的最大值为A,函数在区间上单调递增函数,求的取值范围;

3)令,将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像,对任意,求在区间上零点个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列的前项和为且满足:

(1)求数列的通项公式;

(2)的值;

(3)是否存在大于2的正整数使得?若存在,求出所有符合条件的若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201935日,国务院总理李克强作出的政府工作报告中,提到要惩戒学术不端,力戒学术不端,力戒浮躁之风.教育部2014年印发的《学术论文抽检办法》通知中规定:每篇抽检的学术论文送3位同行专家进行评议,3位专家中有2位以上(含3位)专家评议意见为不合格的学术论文,将认定为存在问题学术论文.有且只有1位专家评议意见为不合格的学术论文,将再送另外2位同行专家(不同于前3位专家)进行复评,2位复评专家中有1位以上(含1位)专家评议意见为不合格的学术论文,将认定为存在问题学术论文.设每篇学术论文被每位专家评议为不合格的概率均为,且各篇学术论文是否被评议为不合格相互独立.

1)若,求抽检一篇学术论文,被认定为存在问题学术论文的概率;

2)现拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的总评审费用1500元;若某次评审抽检论文总数为3000篇,求该次评审费用期望的最大值及对应的值.

查看答案和解析>>

同步练习册答案