精英家教网 > 高中数学 > 题目详情
(1)已知a>0,a2x=10,求的值;

(2)已知2x-2-x=2,求8x的值.

解:(1)原式=

 (2)设t=2x,由条件t-=2,即t2-2t-1=0有t=1±.

又∵t=2x>0,∴t=1+.

∴8x=t3=(1+)3=7+5.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省常德市芷兰实验学校高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知A、B、C是直线l上的三点,向量满足:-(y+1-lnx)+=,(O不在直线l上,a>0)
(1)求y=f(x)的表达式;
(2)若函数f(x)在[1,+∞)上为增函数,求a的范围;
(3)求证:lnn>+++…+对n≥2的正整数n恒成立.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省常德市芷兰实验学校高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知A、B、C是直线l上的三点,向量满足:-(y+1-lnx)+=,(O不在直线l上,a>0)
(1)求y=f(x)的表达式;
(2)若函数f(x)在[1,+∞)上为增函数,求a的范围;
(3)求证:lnn>+++…+对n≥2的正整数n恒成立.

查看答案和解析>>

科目:高中数学 来源:江苏高考真题 题型:解答题

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的导函数,若f′(x)g′(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致,
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值。

查看答案和解析>>

科目:高中数学 来源:松江区二模 题型:解答题

已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

同步练习册答案