(本小题满分13分)
在锐角中,已知内角..所对的边分别为..,向量,,且向量共线.
(1)求角的大小;
(2)如果,求的面积的最大值.
解:(1)由向量共线有:
…………………………………………2分
即,……………………… 4分
又,所以,则=,即 …………………6分
(2)由余弦定理得即……7分
,当且仅当时等号成立……………9分
所以, 得
所以.……………………………… 12分
所以的最大值为……………………………… 13分
【解析】
试题分析:(1)根据共线向量的坐标满足的关系得到一个关系式,利用二倍角的正弦函数公式及同角三角函数间的基本关系化简,即可求出tan2B的值,然后由锐角B的范围求出2B的范围,利用特殊角的三角函数值即可求出B的度数;
(2)由b,cosB的值,利用余弦定理及基本不等式即可求出ac的最大值,根据三角形的面积公式进而得到三角形ABC面积的最大值。
解:(1)由向量共线有:
…………………………………………2分
即,……………………… 4分
又,所以,则=,即 …………………6分
(2)由余弦定理得即……7分
,当且仅当时等号成立……………9分
所以, 得
所以.……………………………… 12分
所以的最大值为……………………………… 13分
考点:本试题主要考查了掌握向量关系时满足的条件,灵活运用二倍角的正弦函数公式及同角三角函数间的基本关系化简求值,灵活运用余弦定理及三角形的面积公式化简求值,是一道中档题.。
点评:解决该试题的难点是运用均值不等式得到ac的最大值。
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com