精英家教网 > 高中数学 > 题目详情

如图,直四棱柱A1B1C1D1-ABCD的高为3,底面是边长为4,且∠DAB=60°的菱形,O是AC与BD的交点,O1是A1C1与B1D1的交点.

(Ⅰ)求二面角O1-BC-D的大小;

(Ⅱ)求点A到平面O1BC的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1中,平面A1BC⊥平面A1ABB1,AB=BC=2,AA1=2
2

(1)求证:BC⊥平面A1ABB1
(2)求直线A1B与平面A1AC成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:湖北省荆州中学2008高考复习立体几何基础题题库二(有详细答案)人教版 人教版 题型:047

求证:底面是梯形的直棱柱的体积,等于两个平行侧面面积的和与这两个侧面间距离的积的一半.

已知:直四棱柱A1C,如图,它的底面AC为梯形.DC∥AB,侧面A1B与侧面D1C的距离为h.

求证:()×h

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,直四棱柱ABCDA1B1C1D1中,底面ABCD是边长为a的   

菱形,且,侧棱AA1长等于3aO为底面ABCD

角线的交点.

(1)求证:OA1∥平面B1CD1

(2)求异面直线ACA1B所成的角;

(3)在棱上取一点F,问AF为何值时,C1F⊥平面BDF

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省哈尔滨六中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,直四棱柱ABCD-A1B1C1D1中,平面A1BC⊥平面A1ABB1,AB=BC=2,
(1)求证:BC⊥平面A1ABB1
(2)求直线A1B与平面A1AC成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省哈尔滨六中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,直四棱柱ABCD-A1B1C1D1中,平面A1BC⊥平面A1ABB1,AB=BC=2,
(1)求证:BC⊥平面A1ABB1
(2)求直线A1B与平面A1AC成角的正弦值.

查看答案和解析>>

同步练习册答案