精英家教网 > 高中数学 > 题目详情
18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且$\sqrt{3}a=2csinA$.
(1)确定角C的大小;
(2)若$c=\sqrt{7}$,且△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求△ABC的周长.

分析 (1)由正弦定理化简已知可求$\sqrt{3}sinA=2sinCsinA$,结合范围$0<A<\frac{π}{2}$,求得$sinC=\frac{{\sqrt{3}}}{2}$,结合范围$0<C<\frac{π}{2}$,即可得解C的值.
(2)由已知及三角形面积公式可求ab=6,进而利用余弦定理可求a+b=5,即可得解△ABC的周长.

解答 (本题满分为10分)
解:(1)∵$\sqrt{3}a=2csinA$,由正弦定理得$\sqrt{3}sinA=2sinCsinA$,
又$0<A<\frac{π}{2}$,sinA>0,
∴$sinC=\frac{{\sqrt{3}}}{2}$,
又$0<C<\frac{π}{2}$,
∴$C=\frac{π}{3}$.…(5分)
(2)由已知得$S=\frac{1}{2}absinC=\frac{1}{2}ab×\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{2}$,
∴ab=6…(7分)
在△ABC中,由余弦定理得${a^2}+{b^2}-2abcos\frac{π}{3}=7$,…(8分)
即a2+b2-ab=7,(a+b)2-3ab=7,
又∵ab=6,
∴a+b=5,…(9分)
故△ABC的周长为$a+b+c=5+\sqrt{7}$.…(10分)

点评 本题主要考查了正弦定理,三角形面积公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a=(2,4,x)$,$\overrightarrow b=(2,y,2)$,若$\overrightarrow a∥\overrightarrow b$,则x+y=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,并且过点P(2,-1)
(1)求椭圆C的方程;
(2)设点Q在椭圆C上,且PQ与x轴平行,过p点作两条直线分别交椭圆C于两点A(x1,y1),B(x2,y2),若直线PQ平分∠APB,求证:直线AB的斜率是定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△OAB的直观图△O′A′B′(如图)O′A′=1,∠B′=30°,则△OAB的面积为(  )
A.$\sqrt{6}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={1,2,3},B={y|y=x-2,x∈A},则A∩B=(  )
A.{1}B.{4}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.2016年3月31日贵州省第十二届人民代表大会常务委员会第二十一次会议通过的《贵州省人口与计划生育条例》全面开放二孩政策.为了了解人们对于贵州省新颁布的“生育二孩放开”政策的热度,现在某市进行调查,对[5,65]岁的人群随机抽取了n人,得到如下统计表和各年龄段抽取人数频率分布直方图:
 分组 支持“生育二孩”人数 占本组的频率
[5,15) 4 0.8
[15,25) 5 p
[2,35) 12 0.8
[35,45) 8 0.8
[45,55) 2 0.4
[55,65) 1 0.2
(1)求n,p的值;
(2)根据以上统计数据填下面2×2列联表,并根据列联表的独立性检验,能否有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系?参考数据:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
年龄不低于45岁的人数年龄低于45岁的人数合计
支持32932
不支持71118
合计104050

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.以A(1,3)和B(-5,1)为端点的线段AB的中垂线方程是(  )
A.3x-y+8=0B.x-3y+8=0C.3x+y+8=0D.3x+y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+$\sqrt{3}$a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若a+b=6,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在${(1-x+\frac{1}{{{x^{2017}}}})^{10}}$的展开式中,含x2项的系数为45.

查看答案和解析>>

同步练习册答案