分析 (1)由正弦定理化简已知可求$\sqrt{3}sinA=2sinCsinA$,结合范围$0<A<\frac{π}{2}$,求得$sinC=\frac{{\sqrt{3}}}{2}$,结合范围$0<C<\frac{π}{2}$,即可得解C的值.
(2)由已知及三角形面积公式可求ab=6,进而利用余弦定理可求a+b=5,即可得解△ABC的周长.
解答 (本题满分为10分)
解:(1)∵$\sqrt{3}a=2csinA$,由正弦定理得$\sqrt{3}sinA=2sinCsinA$,
又$0<A<\frac{π}{2}$,sinA>0,
∴$sinC=\frac{{\sqrt{3}}}{2}$,
又$0<C<\frac{π}{2}$,
∴$C=\frac{π}{3}$.…(5分)
(2)由已知得$S=\frac{1}{2}absinC=\frac{1}{2}ab×\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{2}$,
∴ab=6…(7分)
在△ABC中,由余弦定理得${a^2}+{b^2}-2abcos\frac{π}{3}=7$,…(8分)
即a2+b2-ab=7,(a+b)2-3ab=7,
又∵ab=6,
∴a+b=5,…(9分)
故△ABC的周长为$a+b+c=5+\sqrt{7}$.…(10分)
点评 本题主要考查了正弦定理,三角形面积公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | 支持“生育二孩”人数 | 占本组的频率 |
| [5,15) | 4 | 0.8 |
| [15,25) | 5 | p |
| [2,35) | 12 | 0.8 |
| [35,45) | 8 | 0.8 |
| [45,55) | 2 | 0.4 |
| [55,65) | 1 | 0.2 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
| 支持 | 3 | 29 | 32 |
| 不支持 | 7 | 11 | 18 |
| 合计 | 10 | 40 | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3x-y+8=0 | B. | x-3y+8=0 | C. | 3x+y+8=0 | D. | 3x+y+4=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com