【题目】(2017·鸡西一模)在正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足
的实数λ的值有( )
![]()
A. 0个 B. 1个 C. 2个 D. 3个
科目:高中数学 来源: 题型:
【题目】将集合M={1,2,3,...,15}表示为它的5个三元子集(三元集:含三个元素的集合)的并集,并且这些三元子集的元素之和都相等,则每个三元集的元素之和为________;请写出满足上述条件的集合M的5个三元子集__________(只写出一组)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若曲线
的一条切线经过点
,求这条切线的方程.
(2)若关于
的方程
有两个不相等的实数根x1,x2。
①求实数a的取值范围;
②证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:极坐标与参数方程
已知曲线
的参数方程是
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)写出
的极坐标方程和
的直角坐标方程;
(2)已知点
、
的极坐标分别为
和
,直线
与曲线
相交于
两点,射线
与曲线
相交于点
,射线
与曲线
相交于点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.
(1)求证:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE.求直线BC与平面ABF所成角的大小,并求线段PH的长.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-ax-alnx(a∈R).
(1)若函数f(x)在x=1处取得极值,求a的值;
(2)在(1)的条件下,求证:f(x)≥-
+
-4x+
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥P-ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,
,M为PC的中点,N点在AB上且
.
![]()
(1)证明:MN∥平面PAD;
(2)求直线MN与平面PCB所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其导函数为
.
(1)设
,若函数
在
上有且只有一个零点,求
的取值范围;
(2)设
,且
,点
是曲线
上的一个定点,是否存在实数
,使得
成立?证明你的结论
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com