精英家教网 > 高中数学 > 题目详情

【题目】如图1,在梯形中,的中点,的交点,以为折痕把折起,使点到达点的位置,且,如图2.

(1)证明:平面平面

(2)求二面角的余弦值.

【答案】(1)详见解析;(2).

【解析】

(1)根据正方形的性质可得由勾股定理可得.可得平面由面面垂直的判定定理即可证明平面平面;(2)由(1)知互相垂直,以为轴建立空间坐标系为平面的法向量,利用向量垂直数量积为零列方程求出平面的法向量,利用空间向量夹角余弦公式可求得二面角的余弦值.

(1)在图1中,因为

的中点,,

所以四边形为正方形,

所以

即在图2中,.

又因为,所以在中,

所以.

所以平面

又因为平面,所以平面平面.

(2)由(1)知互相垂直,分别以所在直线为轴建立空间直角坐标系,如图所示,

因为

所以

所以

设平面的法向量为

,则,即

由(1)平面平面,且

所以平面,即为平面的法向量,

所以

所以二面角的余弦值为.

(2)(几何法)取的中点,连接.

因为

所以

所以就是二面角的平面角.

所以

所以

所以

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】渔民出海打鱼,为了保证获得的鱼新鲜,鱼被打上岸后,要在最短的时间内将其分拣、冷藏,若不及时处理,打上来的鱼很快地失去新鲜度(以鱼肉内的三甲胺量的多少来确定鱼的新鲜度.三甲胺是一种挥发性碱性氨,是氨的衍生物,它是由细菌分解产生的.三甲胺量积聚就表明鱼的新鲜度下降,鱼体开始变质进而腐败).已知某种鱼失去的新鲜度与其出海后时间(分)满足的函数关系式为.若出海后10分钟,这种鱼失去的新鲜度为10%,出海后20分钟,这种鱼失去的新鲜度为20%,那么若不及时处理,打上来的这种鱼在多长时间后开始失去全部新鲜度(已知,结果取整数)(

A.33分钟B.40分钟C.43分钟D.50分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与上、下顶点构成直角三角形,以椭圆的长轴长为直径的圆与直线相切.

(1)求椭圆的标准方程;

(2)设过椭圆右焦点且不平行于轴的动直线与椭圆相交于两点,探究在轴上是否存在定点,使得为定值?若存在,试求出定值和点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区进行疾病普查,为此要检验每一人的血液,如果当地有人,若逐个检验就需要检验次,为了减少检验的工作量,我们把受检验者分组,假设每组有个人,把这个个人的血液混合在一起检验,若检验结果为阴性,这个人的血液全为阴性,因而这个人只要检验一次就够了,如果为阳性,为了明确这个个人中究竟是哪几个人为阳性,就要对这个人再逐个进行检验,这时个人的检验次数为次.假设在接受检验的人群中,每个人的检验结果是阳性还是阴性是独立的,且每个人是阳性结果的概率为.

(Ⅰ)为熟悉检验流程,先对3个人进行逐个检验,若,求3人中恰好有1人检测结果为阳性的概率;

(Ⅱ)设个人一组混合检验时每个人的血需要检验的次数.

①当时,求的分布列;

②是运用统计概率的相关知识,求当满足什么关系时,用分组的办法能减少检验次数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有男生27名,女生18名,用分层抽样的方法从该班中抽取5名学生去敬老院参加献爱心活动.

1)求从该班男生、女生中分别抽取的人数;

2)为协助敬老院做好卫生清扫工作,从参加活动的5名学生中随机抽取2名,求这2名学生均为女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造.根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为,径粗,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带.需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄.在算筹计数法中,以纵横两种排列方式来表示数字.如图,是利用算筹表示数1~9的一种方法.例如:3可表示为“”,26可表示为“”,现有6根算筹,据此表示方法,若算筹不能剩余,则用这6根算筹能表示的两位数的个数为( )

A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非空集合关于运算满足:① 对任意,都有;② 存在使对一切都有,则称是关于运算的融洽集,现有下列集合及运算:

是非负整数集,运算:实数的加法;

是偶数集,运算:实数的乘法;

是所有二次三项式组成的集合,运算:多项式的乘法;

运算:实数的乘法;

其中为融洽集的是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的A产品被检测出其中一项质量指标存在问题,该企业为了检查生产A产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品,表格是甲流水线样本的频数分布表,图形是乙流水线样本的频率分布直方图.

1)根据图形,估计乙流水线生产的A产品的该质量指标值的中位数;

2)设某个月内甲、乙两条流水线均生产了3000件产品,若将频率视为概率,则甲、乙两条流水线生产出的合格产品分别约为多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为的奇函数.

(1)若,求使不等式对一切恒成立的实数的取值范围;

(2)若函数的图象过点,是否存在正数,使函数上的最大值为0?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案