精英家教网 > 高中数学 > 题目详情

抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,则有


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:根据抛物线方程求出点C(-,0),可得直线AB方程为y=k(x-),将其与抛物线方程消去y得到关于x的一元二次方程,由根与系数的关系得到x1+x2和x1x2关于p、k的式子,结合两点间的距离公式算出|AB|=.再利用抛物线的定义,得到|AF|+|BF|=x1+x2+p=+p,而|AF|、|AB|、|BF|成等差数列得出|AF|+|BF|=2|AB|,从而建立关于p、k的等式,化简整理得=,即可解出,得到本题答案.
解答:∵抛物线y2=2px的准线方程为x=-
∴准线与x轴的交点C坐标为(-,0)
因此,得到直线AB方程为y=k(x-),与抛物线y2=2px消去y,
化简整理,得
设A(x1,y1),B(x2,y2),由根与系数的关系得
∴|AB|==
==
∵|AF|、|AB|、|BF|成等差数列,
∴|AF|+|BF|=2|AB|,
根据抛物线的定义得|AF|=x1+,|BF|=x2+
因此,得到x1+x2+p=2,即+p=2
化简得=,约去=
∴(1+k2)(1-k2)=,解之得k2=
故选:D
点评:本题给出抛物线准线交对称轴于点C,过点C的直线交抛物线于A、B两点,A、B与焦点F构成的三角形的三边成等差数列,求直线AB的斜率.着重考查了抛物线的定义与简单几何性质,直线与抛物线位置关系等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为(  )
A、y2=
3
2
x
B、y2=9x
C、y2=
9
2
x
D、y2=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px(p>0)上的点M(4,y)到焦点F的距离为5,O为坐标原点,则△OFM的面积为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px,(p>0)绕焦点依逆时针方向旋转90°所得抛物线方程为…(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)若抛物线y2=2px(p>0)的焦点到双曲线x2-y2=1的渐近线的距离为
3
2
2
,则p的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(-1,0)作抛物线y2=2px(p>0)的两条切线,切点分别为B、C,且△ABC是正三角形,则抛物线方程为
y2=
4
3
x
y2=
4
3
x

查看答案和解析>>

同步练习册答案