精英家教网 > 高中数学 > 题目详情
(2013•广元一模)如图所示,AF、DE分别是⊙O和⊙O1的直径,AD与两圆所在平面都垂直,AD=8,BC是⊙O的直径,AB=AC=6,OE∥AD.
①求二面角 B-AD-F 的大小; 
②求异面直线BD与EF所成的角的正弦值.
分析:(1)先证明平面角∠BAF的大小为二面角B-AD-F的大小,再计算其大小即可;
(2)先证明∠BDO为直线BD与EF所成的角,再在Rt△BDO中计算即可.
解答: 解:(1)∵AD⊥底面ABFC,∴DA⊥AB,DA⊥AF,
∴平面角∠BAF的大小为二面角B-AD-F的大小,
∵AB=AC=6,∴△ABC为等腰直角三角形,BA⊥AC,
又O为AC中点,∴∠BAF=45°,
∴二面角B-AD-F的大小为45°;
(2)∵OE∥AD,DE∥AO,∴四边形DAOE为矩形,
∴DE∥AO,DE=AO,∴DE∥OF,DE=OF,
连结DO,∴DO∥EF,∴∠BDO为直线BD与EF所成的角.
∵BC⊥AO,∴BO⊥面DAO,∴BO⊥OD.
Rt△BDO中,BO=AO=3
2
,∴DO=
AD2+AO2
=
82
,∴BD=10
∴sinn∠BDO=
BO
BD
=
3
2
10

∴直线BD与EF所成的角的正弦值为
3
2
10
点评:本题考查面面角,考查异面直线所成角的计算,考查学生分析解决问题的能力,正确作出空间角是关键,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广元一模)给出下面四个命题:
p1:?x∈(0,∞),(
1
2
)x<(
1
3
)x

p2:?x∈(0,1),log
1
2
x>log
1
3
x

p3:?x∈(0,∞),(
1
2
)x>log
1
2
x

p4:?x∈(0,
1
3
),(
1
2
)x<log
1
3
x,
其中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元一模)(x2+
2
x
)8
展开式中x4的系数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元一模)若集合A={x|x2-2x<0},B={x|x>1},则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元一模)非空集合G关于运算?满足:①对任意a、b∈G,都有a?b∈G:;②存在e∈G,对一切a∈G,都 有a?e=e?a=a,则称G关于运算?为“和谐集”,现给出下列集合和运算:
①G={非负整数},?为整数的加法;
②G={偶数},?为整数的乘法;
③G={平面向量},?为平面向量的加法;
④G={二次三项式},?为多项式的加法.
其中关于运算?为“和谐集”的是
①③
①③
(写出所有“和谐集”的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元一模)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数f(x)在[0,6]上有
7
7
个零点.

查看答案和解析>>

同步练习册答案