精英家教网 > 高中数学 > 题目详情
16.已知在直三棱柱ABC-A1B1C1中,AB⊥BC,且AA1=2AB=2BC=2,E,M分别是CC1,AB1的中点. 
(Ⅰ)证明:EM∥平面ABC;
(Ⅱ)求直线A1E与平面AEB1所成角的正弦值;
(Ⅲ)求二面角B-EM-B1的余弦值.

分析 (Ⅰ)以点B为原点,$\overrightarrow{BC}$,$\overrightarrow{B{B_1}}$,$\overrightarrow{BA}$分别为x轴、y轴、z轴正方向,建立空间直角坐标系,利用向量法能证明EM∥平面ABC.
(Ⅱ)求出面AEB1的法向量,由此利用向量法能求出直线A1E与平面AEB1所成角的正弦值.
(Ⅲ)求出面BEM的法向量,利用向量法能求出二面角B-EM-B1的余弦值.

解答 证明:(Ⅰ)在直三棱柱ABC-A1B1C1中,BB1⊥AB,BB1⊥BC,
又∵AB⊥BC,
∴AB⊥平面BCC1B1.  …(1分)
如图,以点B为原点,$\overrightarrow{BC}$,$\overrightarrow{B{B_1}}$,$\overrightarrow{BA}$分别为x轴、y轴、z轴正方向,
建立空间直角坐标系,则B(0,0,0),C(1,0,0),B1(0,2,0),
A(0,0,1),C1(1,2,0),A1(0,2,1).            …(3分)
∵E,M分别是CC1,AB1的中点,
∴E(1,1,0),M(0,1,$\frac{1}{2}$),
∴$\overrightarrow{EM}$=(-1,0,$\frac{1}{2}$).
平面ABC的法向量为$\overrightarrow{m}$=(0,2,0),
∵$\overrightarrow{EM}$•$\overrightarrow{m}$=0,∴$\overrightarrow{EM}$⊥$\overrightarrow{m}$.
又∵EM?平面ABC,∴EM∥平面ABC.   …(6分)
(Ⅱ)$\overrightarrow{A{B_1}}$=(0,2,-1),$\overrightarrow{E{B_1}}$=(-1,1,0),$\overrightarrow{E{A_1}}$=(-1,1,1).
设$\overrightarrow{{n}_{1}}$=(x1,y1,z1)为面AEB1的法向量,则$\overrightarrow{{n}_{1}}$•$\overrightarrow{A{B_1}}$=$\overrightarrow{{n}_{1}}$•$\overrightarrow{E{B_1}}$=0,
即$\left\{\begin{array}{l}2{y_1}-{z_1}=0\\-{x_1}+{y_1}=0\end{array}\right.$取y1=1,则x1=1,z1=2,从而$\overrightarrow{{n}_{1}}$=(1,1,2),
设直线A1E与平面AEB1所成角为θ,
则sinθ=|cos<$\overrightarrow{E{A_1}}$,$\overrightarrow{{n}_{1}}$>|=$\frac{|\overrightarrow{E{A}_{1}}•\overrightarrow{{n}_{1}}|}{|\overrightarrow{E{A}_{1}}|•|\overrightarrow{{n}_{1}}|}$=$\frac{2}{{\sqrt{6}•\sqrt{3}}}$=$\frac{{\sqrt{2}}}{3}$,
即直线A1E与平面AEB1所成角的正弦值为$\frac{{\sqrt{2}}}{3}$.…(10分)
(Ⅲ)$\overrightarrow{BE}$=(1,1,0),$\overrightarrow{BM}$=(0,1,$\frac{1}{2}$).
设$\overrightarrow{{n}_{2}}$=(x2,y2,z2)为面BEM的法向量,则$\overrightarrow{{n}_{2}}$•$\overrightarrow{BE}$=$\overrightarrow{{n}_{2}}$•$\overrightarrow{BM}$=0,
即$\left\{\begin{array}{l}{x_2}+{y_2}=0\\{y_2}+\frac{1}{2}{z_2}=0\end{array}\right.$取z2=2,则x2=1,y2=-1,从而$\overrightarrow{{n}_{2}}$=(1,-1,2),
∴cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=$\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|\overrightarrow{n_1}|•|\overrightarrow{n_2}|}}$=$\frac{2}{3}$,
由图形可知所求二面角的平面角为钝角,
∴二面角B-EM-B1的余弦值为-$\frac{2}{3}$. …(13分)

点评 本题考查线面平行的证明,考查线面所的正弦值的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.运行如图所示程序框图,输出的S的值等于14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图,则该几何体的体积为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.3π+$\frac{9}{2}$B.3π+6C.5π+$\frac{9}{2}$D.5π+6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,矩形ABCD中,$\frac{AB}{AD}$=λ(λ>1),将其沿AC翻折,使点D到达点E的位置,且二面角C-AB-E为直二面角.
(1)求证:平面ACE⊥平面BCE;
(2)设F是BE的中点,二面角E-AC-F的平面角的大小为θ,当λ∈[2,3]时,求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知某中学食堂每天供应3000名学生用餐,为了改善学生伙食,学校每星期一有A、B两种菜可供大家免费选择(每人都会选而且只能选一种菜).调查资料表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有40%改选A种菜.用an,bn分别表示在第n个星期一选A的人数和选B的人数,如果a1=2000.
(1)请用an、bn表示an+1与bn+1
(2)证明:数列{an-2000}是常数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知多面体ABCDEF中,ABCD为菱形,∠ABC=60°,AE⊥平面ABCD,AE∥CF,AB=AE=1,AF⊥BE.
(1)求证:AF⊥平面BDE;
(2)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}|{lnx}|\;,x>0\\{x^2}+2x-1,x≤0.\end{array}$若f(x)的图象与直线y=ax-1有且只有三个公共点,则实数a的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2π{R}^{3}}{3}$B.$\frac{4π{R}^{3}}{3}$C.πR3D.$\frac{π{R}^{3}}{3}$

查看答案和解析>>

同步练习册答案