精英家教网 > 高中数学 > 题目详情
1.已知双曲线x2-$\frac{y^2}{b^2}$=1(b>0)的焦距为4,则b=$\sqrt{3}$.

分析 根据双曲线的方程和焦距求出a、c,由c2=a2+b2求出b的值.

解答 解:由${x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1(b>0)$得,a=1,
因焦距为4,则c=2,所以b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题考查双曲线的标准方程以及a、b、c的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,a,a-1},若-2∈A,则实数a的值为(  )
A.-2B.-1C.-1或-2D.-2或-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.过点P的直线l在x轴上截距为1,点P为直线x-2y-2=0与x+y+1=0的交点.
(1)求直线l的方程;
(2)若l与圆C:x2+y2-2y-3=0交于A、B两点,求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)为定义在[-2,2]上的奇函数,且它在[-2,0]上是增函数
(1)求f(0)的值
(2)证明:f(x)在[0,2]上也是增函数
(3)若f(a-1)+f(-1)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N={1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知tanα=-2,则2sinαcosα-cos2α的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A={x|y=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$},B={y|y=-x2+2x+8},C={x∈R|x<a或x>a+1}
(1)求A,(∁RA)∩B;
(2)若A∪C=R,求实数a的取值范围.
(3)若A∪C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C的圆心为(3,0),且经过点A(4,1),直线l:y=x.
(1)求圆C的方程;
(2)若圆C1与圆C关于直线l对称,点B、D分别为圆C、C1上任意一点,求|BD|的最小值;
(3)已知直线l上一点P在第一象限,两质点M、N同时从原点出发,点M以每秒1个单位的速度沿x轴正方向运动,点N以每秒$2\sqrt{2}$个单位沿射线OP方向运动,设运动时间为t秒.问:当t为何值时直线MN与圆C相切?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中,正确的有①③④
①△ABC中,A>B的充分必要条件是sinA>sinB;
②已知向量$\overrightarrow a=(λ,2λ),\overrightarrow b=(3λ,2)$,如果$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则λ的取值范围是$λ<-\frac{4}{3}$或λ>0;
③若函数f(x)=x(x-c)2在x=2处有极大值,则c=6;
④在锐角△ABC中,BC=1,B=2A,则AC的取值范围为$(\sqrt{2},\sqrt{3})$.

查看答案和解析>>

同步练习册答案