精英家教网 > 高中数学 > 题目详情
用min{a,b}表示a,b两数中的最小值,即min{a,b}=
a    a≤b
b    a>b
,若函数f(x)=min{|x|,|x+t|}的图象关于直线x=-
1
2
对称,则函数y=f(x)-c图象与x轴有4个不同的交点,则实数c的取值范围(  )
A、(0,
1
2
)
B、(0,
1
2
)∪(
1
2
,+∞)
C、(0,1)
D、(0,1)∪(1,+∞)
分析:根据新定义,利用对称性下确定t的值,然后 将函数转化为两个图象的交点问题,利用数形结合即可得到结论.
解答:解:∵min{a,b}表示a,b两数中的最小值,
∴当x=0时,y=min{|x|,|x+t|}=|0|=0,精英家教网
∵函数y=min{|x|,|x+t|}的图象关于直线x=-
1
2
对称,
∴当x=-1时与x=0时的值相等,
即min{|-1|,|-1+t|}=|-1+t|=0,
解得t=1.
∴f(x)=min{|x|,|x+1|},
作出函数f(x)的图象如图:
由图象可知当x=-
1
2
时,f(-
1
2
)=
1
2

由y=f(x)-c=0得f(x)=c.
∴要使函数y=f(x)-c图象与x轴有4个不同的交点,
则0<c<
1
2

故选:A.
点评:本题主要考查函数对称性的应用,以及函数新定义的理解,利用数形结合是解决本题的关键,考查学生的综合应用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某糖果厂生产A、B两种糖果,A种糖果每箱可获利润40元,B种糖果每箱可获利润50元.其生产过程分混合、烹调、包装三道工序.下表为每箱糖果生产过程中所需平均时间(单位:min).
混合 烹调 包装
A 1 5 3
B 2 4 1
每种糖果的生产过程中,混合的设备至多用机器12h,烹调的设备最多只能用机器30h,包装的设备最多只能用机器15h,每种糖果各生产多少箱可获得最大利润?

查看答案和解析>>

科目:高中数学 来源:陕西省渭南市高新中学2011-2012学年高二上学期期中考试数学试题 题型:044

某糖果厂生产AB两种糖果,A种糖果每箱可获利润40元,B种糖果每箱可获利润50元.其生产过程分混合、烹调、包装三道工序.下表为每箱糖果生产过程中所需平均时间(单位:min).

每种糖果的生产过程中,混合的设备至多用机器12 h,烹调的设备最多只能用机器30 h,包装的设备最多只能用机器15 h,每种糖果各生产多少箱可获得最大利润?

查看答案和解析>>

科目:高中数学 来源:2013届陕西省渭南市高二上学期期中考试数学试卷 题型:解答题

某糖果厂生产A、B两种糖果,A种糖果每箱可获利润40元,B种糖果每箱可获利润50元.其生产过程分混合、烹调、包装三道工序.下表为每箱糖果生产过程中所需平均时间(单位:min).

 

混合

烹调

包装

A

1

5

3

B

2

4

1

每种糖果的生产过程中,混合的设备至多用机器12 h,烹调的设备最多只能用机器30 h,包装的设备最多只能用机器15 h,每种糖果各生产多少箱可获得最大利润?

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省咸阳市彩虹中学高二(上)期中数学试卷(文科)(解析版) 题型:解答题

某糖果厂生产A、B两种糖果,A种糖果每箱可获利润40元,B种糖果每箱可获利润50元.其生产过程分混合、烹调、包装三道工序.下表为每箱糖果生产过程中所需平均时间(单位:min).
混合烹调包装
A153
B241
每种糖果的生产过程中,混合的设备至多用机器12h,烹调的设备最多只能用机器30h,包装的设备最多只能用机器15h,每种糖果各生产多少箱可获得最大利润?

查看答案和解析>>

同步练习册答案