精英家教网 > 高中数学 > 题目详情
11.f(x)=cos4x-2sinxcosx-sin4x
(1)求f(x)的最小正周期.
(2)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

分析 (1)由三角函数公式化简可得f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$),由周期公式可得;
(2)由x∈[0,$\frac{π}{2}$]可得2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],由余弦函数的最值可得.

解答 解:(1)由三角函数公式化简可得:
f(x)=cos4x-2sinxcosx-sin4x
=cos4x-sin4x-2sinxcosx
=(cos2x-sin2x)(cos2x+sin2x)-2sinxcosx
=cos2x-sin2x-2sinxcosx
=cos2x-sin2x=$\sqrt{2}$cos(2x+$\frac{π}{4}$),
∴f(x)的最小正周期为$\frac{2π}{2}$=π;
(2)∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴当2x+$\frac{π}{4}$=$\frac{π}{4}$即x=0时,函数取最大值$\sqrt{2}$,
当2x+$\frac{π}{4}$=π即x=$\frac{3π}{8}$时,函数取最小值-$\sqrt{2}$.

点评 本题考查三角函数恒等变换,涉及三角函数的周期性和最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.(1)${log_5}125+lg\frac{1}{1000}+ln\root{3}{e}+{2^{-{{log}_2}3}}$
(2)${(\frac{81}{16})^{0.5}}+{(-4)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,$∠A=\frac{π}{3}$,BC=3,点D在BC边上.
(1)若AD为∠A的平分线,且BD=1,求△ABC的面积;
(2)若AD为△ABC的中线,且AD=$\frac{{3\sqrt{3}}}{2}$,求证:△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设等差数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$nan+an-c(c是常数,n∈N*),a2=6.
(Ⅰ)求c的值及数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{{a_n}-2}}{{{2^{n+1}}}}$,数列{bn}的前n项和为Tn,若2Tn>m-2对n∈N*恒成立,求最大正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\sqrt{lo{g}_{2}(x-1)}$的定义域为(  )
A.[2,+∞)B.(2,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.能够把圆M:x2+y2=1的周长和面积同时等分的函数称为圆M的“八封函数”,下列不是圆M的“八封函数”的是(  )
A.y=sinxB.y=tanxC.y=$\frac{1}{2}$x2-$\frac{1}{2}$D.y=x3-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2x3+1在[1,1+△x]上的平均变化率为(  )
A.3B.6C.3+3△x+(△x)2D.2[3+3△x+(△x)2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知三条直线:l1:x-2y+5=0,l2:mx+y-5=0,l3:-2x+4y+11=0.
(1)若直线l1⊥l2,求实数m的值;
(2)若直线l2∥l3,求实数m的值;
(3)在(1)的条件下,直线l过l1与l2的交点,且坐标原点O到直线l的距离为1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在正项数列{an}中,a1=1,a2=10,$\frac{{a}_{n}}{{a}_{n-1}}$=$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$(n=3,4,5…),求数列|an|的通项公式.

查看答案和解析>>

同步练习册答案