分析 (1)由三角函数公式化简可得f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$),由周期公式可得;
(2)由x∈[0,$\frac{π}{2}$]可得2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],由余弦函数的最值可得.
解答 解:(1)由三角函数公式化简可得:
f(x)=cos4x-2sinxcosx-sin4x
=cos4x-sin4x-2sinxcosx
=(cos2x-sin2x)(cos2x+sin2x)-2sinxcosx
=cos2x-sin2x-2sinxcosx
=cos2x-sin2x=$\sqrt{2}$cos(2x+$\frac{π}{4}$),
∴f(x)的最小正周期为$\frac{2π}{2}$=π;
(2)∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴当2x+$\frac{π}{4}$=$\frac{π}{4}$即x=0时,函数取最大值$\sqrt{2}$,
当2x+$\frac{π}{4}$=π即x=$\frac{3π}{8}$时,函数取最小值-$\sqrt{2}$.
点评 本题考查三角函数恒等变换,涉及三角函数的周期性和最值,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | (2,+∞) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sinx | B. | y=tanx | C. | y=$\frac{1}{2}$x2-$\frac{1}{2}$ | D. | y=x3-x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com