精英家教网 > 高中数学 > 题目详情

已知三次波函数f ( x )的导函数为f′( x ),f′( 1 ) = 0 , f′(2 ) = 3 , f′( 3 ) = 12 .

(1)求f ( x ) f ( 0 )的表达式;

(2)若对任意的x∈[ 1 , 4 ],都有成立,求的取值范围。

解:(1)设f ( x ) = ax3 + bx2 + cx + d . 则f′( x ) = 3ax2 + 2bx + c ,

于是有

      故f ( x ) f ( 0 ) = x3 3x2 + 3x

(2)由(1)得f′( x ) = 3x2 6x + 3 . 对任意的x∈[ 1 , 4 ], f ( x )>f′( x )

等价于f ( x ) f′( x ) = x3 6x2 + 9x + f ( 0 ) 3 >0,

F ( x ) = x3 + 6x2 9x + 3 ,

f ( 0 )>F ( x ) = x3 + 6x2 9x + 3

因为F′( x ) = 3x2 + 12x 9 当x时,F′( x )<0;

x = 1 或3时,F′( x ) = 0

x∈( 1 , 3 )时,F′( x )>0

x时,F′( x )<0

F ( 1 )>F ( 3 )

所以F ( x )在[ 1 ,4]上的最大值为F ( 1 ) = 19

f ( 0 )的取值范围是(19,+∞)

练习册系列答案
相关习题

同步练习册答案