精英家教网 > 高中数学 > 题目详情
如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|<1)上一点M的切线l,与曲线C2:y=(|x|<1)也相切于点N,记点M的横坐标为t(t>1)。
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程。
解:(1)切线,即
代入
化简并整理得,(*),

得m=0或
若m=0,代入(*)式得,与已知矛盾;
,代入(*)式得,满足条件,

综上,,点N的坐标为
(2)因为,
若∠MAB=∠NAB,则,即t=2,此时m=9,
故当实数m=9时,∠MAB=∠NAB,
此时,,∠MAB=∠NAB=45°,
易得M(2,3),
所以,此时MN所在直线的方程为y=4x-5。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线C2:y=-
m(1-x2)
(|x|<1)
也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌二中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省温州市四校联考高二(下)期末数学试卷(理科)(解析版) 题型:解答题

如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌二中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省杭州二中、学军中学、效实中学、嘉兴一中、杭州高中五校高三第二次联考数学试卷(理科)(解析版) 题型:解答题

如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.

查看答案和解析>>

同步练习册答案