精英家教网 > 高中数学 > 题目详情
已知x=a+(a>2),y=(b<0),则x,y之间的大小关系是( )
A.x>y
B.x<y
C.x=y
D.不能确定
【答案】分析:由基本不等式可得x≥4,由二次函数和指数函数的值域可得y<4,即可比较大小.
解答:解:由题意可得x=a+=
=4,当且仅当a=3时取等号;
因为当b<0时,b2-2>-2,指数函数y=单调递减,
故y==4,即x>y
故选A
点评:本题为两式大小的比较,涉及基本不等式和指数函数的性质,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,是否存在实数m,使得直线6x+y+m=0恰为曲线y=f(x)的切线?若存在,求出m的值;若不存在,说明理由;
(3)设定义在D上的函数y=h(x)的图象在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)x-x0
>0
在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4,试问y=f(x)是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,是否存在实数m,使得直线6x+y+m=0恰为曲线y=f(x)的切线?若存在,求出m的值;若不存在,说明理由;
(3)设定义在D上的函数y=h(x)的图象在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)
x-x0
>0
在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4,试问y=f(x)是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个。已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是
(1)求n的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b。
①记事件A表示“a+b=2”,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率。

查看答案和解析>>

科目:高中数学 来源:2009-2010学年福建省厦门市高三(上)期末数学试卷(文科)(解析版) 题型:解答题

袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是
(I)求n的值;
(II)从袋子中不放回地随机抽取两个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.
①记事件A表示“a+b=2”,求事件A的概率;
②在区间[0,2]内任取两个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

同步练习册答案