设函数f (x)是定义在R上的以5为周期的奇函数,若
,
,则
的取值范围是( )
A.(-∞, 0) B.(0, 3) C.(0, +∞) D.(-∞, 0)∪(3, +∞)
科目:高中数学 来源: 题型:
| 1 |
| lgx |
| 3 |
| π |
| 6 |
| x2 |
| 25 |
| y2 |
| 16 |
查看答案和解析>>
科目:高中数学 来源:2009届高考数学二轮专题突破训练(概率) 题型:044
设函数f(x)=ax+
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图像是一个中心对称图形,并求其对称中心;
(3)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源:2008年普通高等学校招生全国统一考试宁夏卷数学理科 题型:044
设函数f(x)=ax+
(a,b∈Z),曲线y=f(x)在点(0,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
设函数f(x)=ax+
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
设函数f(x)=ax+
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com