精英家教网 > 高中数学 > 题目详情
若函数f(x)=3sinx-4cosx,x∈[0,π],则函数f(x)的最大值
 
,最小值
 
分析:利用辅助角公式化简函数f(x)=3sinx-4cosx,通过x的范围确定函数的最值.
解答:解:函数f(x)=3sinx-4cosx=5sin(x+arcsin
4
5
),
因为x∈[0,π],所以x+arcsin
4
5
∈[arcsin
4
5
,π+arcsin
4
5
],
所以函数f(x)的最大值:5;当x=π+arcsin
4
5
时,函数最小值为:-4;
故答案为:5;-4
点评:本题是基础题,考查三角函数的化简求值,三角函数的最值的求法,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,M是单位圆与x轴正半轴的交点,点P在单位圆上,∠MOP=x(0<x<π),
OQ
=
OM
+
OP
,四边形OMQP的面积为S,函数f(x)=
OM
OQ
+
3
S

(1)求函数f(x)的表达式及单调递增区间;
(2)在△ABC中,a、b、c分别为角A、B、C的对边,若f(A)=3,b=1,S△ABC=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,M是单位圆与x轴正半轴的交点,点P在单位圆上,∠MOP=x(0<x<π),
OQ
=
OM
+
OP
,四边形OMQP的面积为S,函数f(x)=
OM
OQ
+
3
S

(1)求函数f(x)的表达式及单调递增区间;
(2)在△ABC中,a、b、c分别为角A、B、C的对边,若f(A)=3,a=2
3
,b=2
,求c的值.

查看答案和解析>>

同步练习册答案