精英家教网 > 高中数学 > 题目详情

已知函数,则函数的单调递增区间是        

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+φ)(φ∈R),若f(x)≤|f(
π
6
)|
对x∈R恒成立,且f(
π
2
)>f(π)
,则函数f(x)的单凋递减区间是(  )

查看答案和解析>>

科目:高中数学 来源:2011届广东省高考猜押题卷文科数学(二)解析版 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)请研究函数的单调性;
(Ⅱ)若函数有两个零点,求实数的取值范围;
(Ⅲ)若定义在区间D上的函数对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数为区间D上的“凹函数”.若函
的最小值为,试判断函数是否为“凹函数”,并对你的判断加以证明.

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:选择题

已知函数,则它的单调减区间是

A.(-∞,0)             B.(0,+ ∞)  

C.(-1,1)               D.(-∞,-1)和(1,+ ∞)

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高考猜押题卷文科数学(二)解析版 题型:解答题

(本小题满分14分)

已知函数

(Ⅰ)请研究函数的单调性;

(Ⅱ)若函数有两个零点,求实数的取值范围;

(Ⅲ)若定义在区间D上的函数对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数为区间D上的“凹函数”.若函

 

的最小值为,试判断函数是否为“凹函数”,并对你的判断加以证明.

 

查看答案和解析>>

同步练习册答案