精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、 F分别为MB、PB、PC的中点,且AD=PD=2MA。
(I)求证:平面EFG⊥平面PDC;
(Ⅱ)求三棱锥P-MAB与四棱锥P-ABCD的体积之比。
解:(I)证明:由已知MA⊥平面ABCD,PD∥MA
所以PD⊥平面ABCD
又BC平面ABCD
所以PD⊥BC
因为四边形ABCD为正方形
所以BC⊥DC
又PD∩DC=D
因此BC⊥平面PDC
在△PBC中,因为G、F分别为PB、PC的中点
所以GF∥BC
因此GF⊥平面PDC
又GF平面EFG
所以平面EFG⊥平面PDC;
(Ⅱ)因为PD⊥平面ABCD,四边形ABCD为正方形,不妨设MA=1,则PD=AD=2
所以
由于DA⊥面MAB,且PD∥MA
所以DA即为点P到平面MAB的距离
三棱锥
所以
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD、ADEF、ABGF均为全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求证:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,平行四边形ABCD的顶点都在以AC为直径的圆O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F分别为BP,CP的中点.
(I)证明:EF∥平面ADP;
(II)求三棱锥M-ABP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)线段ED上是否存在点Q,使平面EAC⊥平面QBC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中点. 
(1)求证:CM⊥平面ABDE;
(2)求几何体的体积.

查看答案和解析>>

同步练习册答案