【题目】已知中心在原点
,焦点在
轴上,离心率为
的椭圆过点![]()
![]()
(1)求椭圆的方程;
(2)设不过原点
的直线
与该椭圆交于
两点,满足直线
的斜率依次成等比数列,求
面积的取值范围.
【答案】(1)
;(2)
.
【解析】
试题(1)先设出椭圆方程为
,再根据条件离心率为
及椭圆上的点
,代入即可得到椭圆方程;(2)先设出直线
方程
及
,然后联立椭圆方程得到
及
.再由直线
的斜率依次成等比数列得到
,由
得到
.代入
中及直线
的斜率存在得到
,且
,然后由点到直线的距离公式及两点间距离公式得到
面积
.最后由基本不等式得到
,从而得到
面积的取值范围.
试题解析:(1)由题意可设椭圆方程为
,则
(其中
,
),且
,故
.
所以椭圆的方程为
.
(2)由题意可知,直线
的斜率存在且不为0.故可设直线
:
,
设
,
由
,消去
得
,
则
,
且
,
故
,
因为直线
的斜率依次成等比数列,
所以
,即
.
又
,所以
,即
.
由于直线
的斜率存在,且
,得
,且
,
设
为点
到直线
的距离,则
,
,
所以
,
故
面积的取值范围为
.
科目:高中数学 来源: 题型:
【题目】某企业加工生产一批珠宝,要求每件珠宝都按统一规格加工,每件珠宝的原材料成本为3.5万元,每件珠宝售价(万元)与加工时间
(单位:天)之间的关系满足图1,珠宝的预计销量(件)与加工时间
(天)之间的关系满足图2.原则上,单件珠宝的加工时间不能超过55天,企业支付的工人报酬为这批珠宝销售毛利润的三分之一,其他成本忽略不计算.
![]()
(1)如果每件珠宝加工天数分别为6,12,预计销量分别会有多少件?
(2)设工厂生产这批珠宝产生的纯利润为
(万元),请写出纯利润
(万元)关于加工时间
(天)之间的函数关系式,并求纯利润
(万元)最大时的预计销量.
注:毛利润=总销售额-原材料成本,纯利润=毛利润-工人报酬
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某“双一流
类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:
![]()
(1)将同一组数据用该区间的中点值作代表,求这100人月薪收入的样本平均数
;
(2)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:
方案一:设区间
,月薪落在区间
左侧的每人收取400元,月薪落在区间
内的每人收取600元,月薪落在区间
右侧的每人收取800元;
方案二:每人按月薪收入的样本平均数的
收取;
用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数,
.
(1)画出
的大致图象,并根据图象写出函数
的单调区间;
(2)当
且
时,求
的取值范围;
(3)是否存在实数a,b,
使得函数
在
上的值域也是
?若存在,求出a,b的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,圆心为点
,点
是圆
内一个定点,
是圆上任意一点,线段
的垂直平分线
和半径
相交于点
在圆上运动.
![]()
(l)求动点
的轨迹
的方程;
(2)若
为曲线
上任意一点,
|的最大值;
(3)经过点
且斜率为
的直线交曲线
于
两点在
轴上是否存在定点
,使得
恒成立?若存在,求出点
坐标:若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,
是椭圆
上一点,
轴,
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
、
两点,线段
的中点为
,
为坐标原点,且
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的左,右顶点分别为
,
,长轴长为
,且经过点
.
(1)求椭圆
的标准方程;
(2)若
为椭圆
上异于
,
的任意一点,证明:直线
,
的斜率的乘积为定值;
(3)已知两条互相垂直的直线
,
都经过椭圆
的右焦点
,与椭圆
交于
,
和
,
四点,求四边形
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:![]()
1
证明直线l经过定点并求此点的坐标;
2
若直线l不经过第四象限,求k的取值范围;
3
若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设
的面积为S,求S的最小值及此时直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com