精英家教网 > 高中数学 > 题目详情
(文)设f(x)是定义在(-π,0)∪(0,π)上的奇函数,其导函数为f'(x).当0<x<π时,
f'(x)•cosx-sinx•f(x)>0,则不等式f(x)•cosx>0的解集为
 
分析:根据[f(x)cosx]′=f'(x)•cosx-sinx•f(x),据已知条件及导函数符号与函数单调性的关系判断出f(x)cosx的单调性,容易得到函数f(x)cosx的两个零点,根据函数的单调性求出不等式的解集.
解答:解:设g(x)=f(x)cosx,
∵f(x)是定义在(-π,0)U(0,π)上的奇函数,
故g(-x)=f(-x)cos(-x)=-f(x)cosx=-g(x),
∴g(x)是定义在(-π,0)U(0,π)上的奇函数.
g'(x)=f'(x)cosx-sinxf(x)>0,
∴g(x)在(0<x<π)递增,
于是奇函数g(x)在(-π,0)递增.
g(±
π
2
)=0

∴f(x)•cosx>0的解集为
(-
π
2
,0)∪(
π
2
,π)

故答案为:(-
π
2
,0)∪(
π
2
,π)
点评:求抽象不等式的解集,一般能够利用已知条件判断出函数的单调性,再根据函数的单调性将抽象不等式转化为具体函的不等式解之.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,椭圆的方程为(a>0),其右焦点为F,把椭圆的长轴分成6等份,过每个分点作x轴的垂线交椭圆上半部于点P1、P2、P3、P4、P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=.

(1)求椭圆的方程;

(2)设直线l过F点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

(文)某厂家拟在2006年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=3(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2006年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).

(1)将2006年该产品的利润y万元表示为年促销费用m万元的函数;

(2)该厂家2006年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

同步练习册答案