精英家教网 > 高中数学 > 题目详情

“φ=数学公式”是“函数y=sing(x+φ)为偶函数的”


  1. A.
    充分不必要条件
  2. B.
    必要不充分条件
  3. C.
    充要条件
  4. D.
    既不充分也不必要条件
A
分析:通过φ=?函数y=sing(x+φ)为偶函数,以及函数y=sing(x+φ)为偶函数推不出φ=,判断充要条件即可.
解答:因为φ=?函数y=sing(x+φ)=-cosx为偶函数,所以“φ=”是“函数y=sing(x+φ)为偶函数”充分条件,
“函数y=sing(x+φ)为偶函数”所以“φ=kπ+,k∈Z”,
所以“φ=”是“函数y=sing(x+φ)为偶函数”的充分不必要条件.
故选A.
点评:本题是基础题,考查正弦函数的奇偶性,必要条件、充分条件与充要条件的判断,正确计算函数是偶函数的条件是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、有下列命题:①x=0是函数y=x3的极值点;
②三次函数f(x)=ax3+bx2+cx+d有极值点的充要条件是b2-3ac>0;
③奇函数f(x)=mx3+(m-1)x2+48(m-2)x+n在区间(-4,4)上是单调减函数.
其中假命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个命题:
①函数y=sin(
2
-x)
是偶函数;
②直线x=
π
8
是函数y=sin(2x+
4
)
的图象的一条对称轴;
③若α,β都是第一象限角,且α>β,则tanα>tanβ;
④y=|sinx|,y=|tanx|的最小正周期分别为π , 
π
2

其中正确的命题序号是
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名一模)如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①-3是函数y=f(x)的极值点;
②-1是函数y=f(x)的最小值点;
③y=f(x)在x=0处切线的斜率小于零;
④y=f(x)在区间(-3,1)上单调递增.
则正确命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,f'(1))是函数y=f(x)的导函数图象上的一点,点B为(x,ln(x+1)),向量
a
=(1,1)
,令f(x)=
AB
a

(1)求函数y=f(x)的表达式;
(2)若x>0,证明:f(x)>
2x2+3x-10
2(x+2)

(3)若x∈[-1,1]时,不等式
1
2
x2≤f(x2)+m2-
9
2
m-3
都恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a-2)x-alnx,其中常数a≠0.
(I)若x=3是函数y=f(x)极值点,求a的值;
(II)当a=-2时,给出两组直线:6x+y+m=0,x-y+n=0,其中m,n为常数,判断这两组直线中是否存在y=f(x)的切线,若存在,求出切线方程;若不存在,请说明理由.
(III)是否存在正实数a,使得关于x的方程f(x)=(3a-2)x+alnx有唯一实数解?若存在,求a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案