精英家教网 > 高中数学 > 题目详情
点P(1,-2)和圆C:x2+y2+m2x+y+m2=0的位置关系是
点在圆外
点在圆外
分析:把点P(1,-2)代入圆的一般式方程的左端,得到的值大于零,可得点在圆外.
解答:解:将点P(1,-2)代入圆的方程,得1+4+m2-2+m2=2m2+3>0,∴点P在圆C外部,
故答案为 点在圆外.
点评:本题主要考查点与圆的位置关系的判断方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网与向量、圆交汇.例5:已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
(λ≠0且λ≠±1),
求证:点Q总在某条定直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P(1,-2)和圆C:x2+y2+m2x+y+m2=0的位置关系是______.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省连云港市新海高级中学高三(下)3月调研数学试卷(解析版) 题型:解答题

与向量、圆交汇.例5:已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

同步练习册答案