精英家教网 > 高中数学 > 题目详情
已知函数g(x)是f(x)=x2(x>0)的反函数,点M(x0,y0)、N(y0,x0)分别是f(x)、g(x)图象上的点,l1、l2分别是函数f(x)、g(x)的图象在M,N两点处的切线,且l1l2
(Ⅰ)求M、N两点的坐标;
(Ⅱ)求经过原点O及M、N的圆的方程.
(Ⅰ)因为f(x)=x2(x>0),所以g(x)=
x
(x>0)

从而f'(x)=2x,g′(x)=
1
2
x

所以切线l1,l2的斜率分别为k1=f'(x0)=2x0k2=g′(y0)=
1
2
y0

又y0=x02(x0>0),所以k2=
1
2x0

因为两切线l1,l2平行,所以k1=k2
因为x0>0,
所以x0=
1
2

所以M,N两点的坐标分别为(
1
2
1
4
),(
1
4
1
2
)

(Ⅱ)设过O、M、N三点的圆的方程为:x2+y2+Dx+Ey+F=0.
因为圆过原点,所以F=0.因为M、N关于直线y=x对称,所以圆心在直线y=x上.
所以D=E.
又因为M(
1
2
1
4
)
在圆上,
所以D=E=-
5
12

所以过O、M、N三点的圆的方程为:x2+y2-
5
12
x-
5
12
y=0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)是f(x)=x2(x>0)的反函数,点M(x0,y0)、N(y0,x0)分别是f(x)、g(x)图象上的点,l1、l2分别是函数f(x)、g(x)的图象在M,N两点处的切线,且l1∥l2
(Ⅰ)求M、N两点的坐标;
(Ⅱ)求经过原点O及M、N的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•邯郸一模)已知函数g(x)是R上的奇函数,且当x<0时g(x)=-ln(1-x),函数f(x)=
x3
 (x≤0)
g
 (x>0),
若f(2-x2)>f(x),则实数x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数g(x)是f(x)=x2(x>0)的反函数,点M(x0,y0)、N(y0,x0)分别是f(x)、g(x)图象上的点,l1、l2分别是函数f(x)、g(x)的图象在M,N两点处的切线,且l1∥l2
(Ⅰ)求M、N两点的坐标;
(Ⅱ)求经过原点O及M、N的圆的方程.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市海淀区高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知函数g(x)是f(x)=x2(x>0)的反函数,点M(x,y)、N(y,x)分别是f(x)、g(x)图象上的点,l1、l2分别是函数f(x)、g(x)的图象在M,N两点处的切线,且l1∥l2
(Ⅰ)求M、N两点的坐标;
(Ⅱ)求经过原点O及M、N的圆的方程.

查看答案和解析>>

同步练习册答案