精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin2x,若f(x+t)是偶函数,则t的一个可能值等于 ( )
A.
B.
C.
D.
【答案】分析:由已知中函数f(x)=sin2x,若f(x+t)是偶函数,根据正弦型函数的性质,我们可以确定满足条件的t的取值(含参数k),逐一分析四个答案中的t值,判断是否存在满足条件的整数k,即可得到答案.
解答:解:∵函数f(x)=sin2x,
∴f(x+t)=sin2(x+t)
若f(x+t)是偶函数,则2t=+kπ,k∈Z
则t=+k•,k∈Z
当k=0时,t=
故选C
点评:本题考查的知识点是正弦型函数的性质,函数奇偶性的性质,其中熟练掌握正弦型函数的图象和性质是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北)设函数f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
1
2
,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
π
4
,0)
,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)设函数f(x)=sin2(x+
π
4
)-cos2(x+
π
4
)(x∈R),则函数f(x)是(  )

查看答案和解析>>

科目:高中数学 来源:2013年河南省新乡、许昌、平顶山高考数学一模试卷(理科)(解析版) 题型:选择题

设函数f(x)=sin2(x+)-cos2(x+)(x∈R),则函数f(x)是( )
A.最小正周期为π的奇函数
B.最小正周期为π的偶函数
C.最小正周期为的奇函数
D.最小正周期为的偶函数

查看答案和解析>>

科目:高中数学 来源:2012年湖北省高考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=sin2ωx+2sinωx•cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2013年山东省高考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为
(Ⅰ)求ω的值
(Ⅱ)求f(x)在区间[]上的最大值和最小值.

查看答案和解析>>

同步练习册答案