精英家教网 > 高中数学 > 题目详情

已知p:?x∈R,2x>m(x2+1),q:?x0∈R,+2x0-m-1=0,且p∧q为真,求实数m的取值范围.

-2≤m<-1.

解析试题分析:2x>m(x2+1) 可化为mx2-2x+m<0.
所以若p:?x∈R, 2x>m(x2+1)为真,
则mx2-2x+m<0对任意的x∈R恒成立.
由此可得m的取值范围.
若q:?x0∈R,+2x0-m-1=0为真,
则方程x2+2x-m-1=0有实根,由此可得m的取值范围.
p∧q为真,则p、q 均为真命题,取m的公共部分便得m的取值范围.
试题解析:2x>m(x2+1) 可化为mx2-2x+m<0.
若p:?x∈R, 2x>m(x2+1)为真,
则mx2-2x+m<0对任意的x∈R恒成立.
当m=0时,不等式可化为-2x<0,显然不恒成立;
当m≠0时,有m<0,Δ= 4-4m2<0,∴m<-1.
若q:?x0∈R,+2x0-m-1=0为真,
则方程x2+2x-m-1=0有实根,
∴Δ=4+4(m+1)≥0,∴m≥-2.
又p∧q为真,故p、q 均为真命题.
∴m<-1且m≥-2,∴-2≤m<-1.
考点:1、全称命题与特称命题;2、逻辑连结词.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p或q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题;命题:不等式对任意恒成立.若为真,且为真,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知方程有两个不相等的负实根;不等式的解集为.若“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题:不等式对一切实数都成立;命题:已知函数的图像在点处的切线恰好与直线平行,且上单调递减.若命题为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题p:函数的定义域为R;命题q:对一切的实数恒成立,如果命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题,且,命题,且.
(Ⅰ)若,求实数的值;
(Ⅱ)若的充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题,命题
如果“”为真,“”为假,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题上是增函数;命题函数存在极大值和极小值。求使命题“”为真命题的的取值范围。

查看答案和解析>>

同步练习册答案