精英家教网 > 高中数学 > 题目详情

三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.

(Ⅰ)求恰有二人破译出密码的概率;

(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.

解:记“第i个人破译出密码”为事件Ai(i=1,2,3),依题意有

且A1,A2,A3相互独立.

(Ⅰ)设“恰好二人破译出密码”为事件B,则有B=A1?A2??A1??A3+?A2?A3且A1?A2?,A1??A3?A2?A3彼此互斥

于是P(B)=P(A1?A2?)+P(A1??A3)+P(?A2?A3

    =

    =

答:恰好二人破译出密码的概率为

(Ⅱ)设“密码被破译”为事件C,“密码未被破译”为事件D.

D=??,且互相独立,则有

P(D)=P()?P()?P()=

而P(C)=1-P(D)=,故P(C)>P(D).

答:密码被破译的概率比密码未被破译的概率大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三人独立破译同一份密码.已知三人各自破译出密码的概率分别为
1
5
1
4
1
3
,且他们是否破译出密码互不影响.
(Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
1
2
1
3
,p
.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为
1
4

(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求p的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
1
3
1
4
,p
,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为
1
6

(1)求p的值,
(2)设在甲、乙、丙三人中破译出密码的总人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
1
2
1
3
、p,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为
1
4

(1)求p的值.
(2)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市西城区高三一模试卷数学(理科) 题型:解答题

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为.

(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;

(Ⅱ)求的值;

(Ⅲ)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.

 

查看答案和解析>>

同步练习册答案