精英家教网 > 高中数学 > 题目详情
tan20o+tan40o+tan120otan20otan40o
的值为
 
分析:根据60°=20°+40°,由两角和的正切函数公式化简后,得到tan20°+tan40°与tan20°tan40°的关系,然后把所求的式子利用特殊角的三角函数值化简后,将得到的关系式代入,化简后即可求出值.
解答:解:由tan60°=tan(20°+40°)=
tan20°+tan40°
1-tan20°tan40°
=
3

得到tan20°+tan40°=
3
-
3
tan20°tan40°,
tan20o+tan40o+tan120o
tan20otan40o

=
-
3
-
3
tan20°tan40°-
3
 
tan20°tan40°

=-
3

故答案为:-
3
点评:此题考查学生灵活运用两角和的正切函数公式化简求值,是一道基础题.学生做题时注意角度的变换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列各式的值.
(1)a2sin(-1350°)+b2tan405°-(a-b)2tan765°-2abcos(-1080°);
(2)sin(-
11π
6
)+cos
12
5
π•tan4π.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值sin(-
23
6
π
)+cos
13
7
πtan4π-cos
13
3
π
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的单调函数f(x)满足f(3)=tan
3
且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求证f(x)为奇函数;
(Ⅱ)若f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

tan20o+tan40o+tan120o
tan20otan40o
的值为______.

查看答案和解析>>

同步练习册答案