精英家教网 > 高中数学 > 题目详情
在数轴上区间[-3,6]内,任取三个点A,B,C,则它们的坐标满足不等式:(xA-xB)(xB-xC)<0的概率为
2
3
2
3
分析:(xA-xB)(xB-xC)<0的实质是点B在点A,C之前,或点B在点A,C之后,根据三个点A,B,C的全排列共有A33种,
点B在点A,C之前和点B在点A,C之后的排列各有2个,由此求得所求事件的概率.
解答:解:(xA-xB)(xB-xC)<0的实质是,点B在点A,C之前,或点B在点A,C之后.
三个点A,B,C的全排列共有A33=6种,
点B在点A,C之前的排列有2个,即B、A、C和B、C、A.
点B在点A,C之后,排列有2个,即 A、C、B或 C、A、B.
故可得:(xA-xB)(xB-xC)<0的概率为
4
6
=
2
3

故答案为:
2
3
点评:本题主要考查等可能事件的概率,体现了转化的数学思想,得到“(xA-xB)(xB-xC)<0的实质是点B在点A,C之前,
或点B在点A,C之后”,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间[0,4]对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间[0,4]上(除两个端点外)的点,在第n次操作完成后(n≥1),恰好被拉到与4重合的点所对应的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间[0,4]对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间[0,4]上(除两个端点外)的点,在第n次操作完成后(n≥1),恰好被拉到与4重合的点所对应的坐标为f(n),则f(3)=
1
2
3
2
5
2
7
2
1
2
3
2
5
2
7
2
;f(n)=
j
2n-2
(这里j为[1,2n]中的所有奇数)
j
2n-2
(这里j为[1,2n]中的所有奇数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在数轴上区间[-3,6]内,任取三个点A,B,C,则它们的坐标满足不等式:(xA-xB)(xB-xC)<0的概率为________.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省无锡市高考数学模拟试卷(3)(解析版) 题型:解答题

在数轴上区间[-3,6]内,任取三个点A,B,C,则它们的坐标满足不等式:(xA-xB)(xB-xC)<0的概率为   

查看答案和解析>>

同步练习册答案