精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,
有f(x1● x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)如果f(4)=1,f(3x+1)+f(2x﹣6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
(1)解:令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.
(2)证明:令x1=x2=﹣1,有f[(﹣1)×(﹣1)]=f(﹣1)+f(﹣1).解得f(﹣1)=0.
令x1=﹣1,x2=x,有f(﹣x)=f(﹣1)+f(x),
∴f(﹣x)=f(x).
∴f(x)为偶函数.
(3)解:f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3.
∴f(3x+1)+f(2x﹣6)≤3即f[(3x+1)(2x﹣6)]≤f(64).(*)
∵f(x)在(0,+∞)上是增函数,
∴(*)等价于不等式组

∴3<x≤5或﹣≤x<﹣或﹣<x<3.
∴x的取值范围为{x|﹣≤x<﹣或﹣<x<3或3<x≤5}.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案