精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)画出函数f(x)在长度为一个周期的闭区间上的简图;
(2)将函数y=sinx的图象作怎样的变换可得到f(x)的图象?
(3)设函数g(x)=|f(x)|,求g(x)的周期、单调递减区间.

解:(1)函数f(x)的周期
,解得.列表如下:
x
0π
3sin(030-30
…(3分)
描出五个关键点并光滑连线,得到一个周期的简图.图象如图所示. …(4分)
(2)方法一:先把y=sinx的图象向右平移个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f(x)的图象.…(8分)
方法二:先把y=sinx的图象所有点的纵坐标扩大为原来的3倍,然后把所有点的横坐标扩大为原来的2倍,再把图象向右平移个单位,得到f(x)的图象.…(8分)
(3)g(x)的周期为…(9分)
解不等式 ,…(10分) 得
所以,函数g(x)的单调递减区间为.…(12分)
分析:(1)用五点法作函数f(x)在长度为一个周期的闭区间上的简图.
(2)方法一:先把y=sinx的图象向右平移个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f(x)的图象.
方法二:先把y=sinx的图象所有点的纵坐标扩大为原来的3倍,然后把所有点的横坐标扩大为原来的2倍,再把图象向右平移个单位,得到f(x)的图象.
(3)由题意知,g(x)的周期是函数f(x)的周期的一半,解不等式
求得x的范围,即可得到g(x)的单调递减区间.
点评:本题考查用五点法作y=Asin(ωx+∅)的图象和性质,以及函数y=Asin(ωx+∅)的图象变换,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2009-2010学年高一(下)模块考试数学试卷(必修4)(解析版) 题型:解答题

已知函数
(1)画出函数f(x)在长度为一个周期的闭区间上的简图.
(2)设函数g(x)=|f(x)|,求g(x)的周期、单调递减区间.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(一)理数学卷(解析版) 题型:解答题

已知函数

(1)画出函数的图象,写出函数的单调区间;

(2)解关于的不等式

 

查看答案和解析>>

科目:高中数学 来源:2015届山东省高一上学期10月月考数学试卷(解析版) 题型:解答题

(本小题满分12分)已知函数(∈R).

(1)画出当=2时的函数的图象;

(2)若函数在R上具有单调性,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013届新疆喀什二中高二下期中文科数学(1、3、4部)(解析版) 题型:解答题

(本小题满分12分)已知函数

(1)画出函数图像;

(2)求的值;

(3)当时,求取值的集合.

 

查看答案和解析>>

科目:高中数学 来源:2010年陕西省高一上学期期中考试数学试卷 题型:解答题

(12分)已知函数

(1)画出函数图像;

(2)求的值;

(3)当时,求取值的集合.

 

查看答案和解析>>

同步练习册答案