精英家教网 > 高中数学 > 题目详情
若在区域
x+y-
2
≤0
x≥0
y≥0
内任取一点P,则点P恰好在单位圆x2+y2=1内的概率为
 
考点:几何概型,简单线性规划
专题:概率与统计
分析:作出不等式组对应的平面区域,利用几何概型的概率公式分别求出对应区域的面积即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
对应的三角形面积为
1
2
×
2
×
2
=1

单位圆x2+y2=1内面积为
1
4
×π×12=
π
4

则由几何概型的概率公式可知点P恰好在单位圆x2+y2=1内的概率为
π
4

故答案为:
π
4
点评:本题主要考查几何概型的概率公式的应用,求出对应区域的面积是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知与抛物线x2=4y有相同的焦点的椭圆E:
y
2
 
a
2
 
+
x
2
 
b
2
 
=1(a>b>0)的上、下顶点分别为A(0,2)、B(0,-2),过(0,1)的直线与椭圆E交于M、N两点,与抛物线交于C、D两点,过C、D分别作抛物线的两切线l1、l2
(1)求椭圆E的方程并证明l1⊥l2
(2)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦距为2
7
,其一条渐近线的倾斜角为θ,且tanθ=
3
2
.以双曲线C的实轴为长轴,虚轴为短轴的椭圆记为E.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设点A是椭圆E的左顶点,P、Q为椭圆E上异于点A的两动点,若直线AP、AQ的斜率之积为-
1
4
,问直线PQ是否恒过定点?若恒过定点,求出该点坐标;若不恒过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:
x=t
y=t-2
(t为参数)与曲线C:
x=2cosθ
y=2sinθ
为参数)交于A、B两点,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程|logax|=||x-3|-1|有三解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
2
,[an]表示an的整数部分,(an)表示an的小数部分,an+1=[an]+
1
(an)
(n∈N*),则an=
 
;数列{bn}中,b1=3,b2=2,
b
2
n+1
=bnbn+2
(n∈N*),则
n
i=1
aibi
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≤x
x+y≤1
y≥-1
,则x+2y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若点(x,y)在曲线y=-|x|与y=-2所围成的封闭区域内(包括边界),则2x-y的最大值为(  )
A、-6B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.试证明:
(1)?a∈R,y=(a+1)(2x-1)是函数y=f(x)的图象的一条切线;
(2)?a∈R,存在ξ∈(1,e),使f′(ξ)=
f(e)-f(1)
e-1

查看答案和解析>>

同步练习册答案