精英家教网 > 高中数学 > 题目详情
20、设Sn是数列{an}(n∈N*)的前n项和,a1=a,且Sn2=3n2an+Sn-12,an≠0,n=2,3,4,….
(1)证明数列{an+2-an}(n≥2)是常数数列;
(2)试找出一个奇数a,使以18为首项,7为公比的等比数列{bn}(n∈N*)中的所有项都是数列{an}中的项,并指出bn是数列{an}中的第几项.
分析:(1)由已知得Sn+Sn-1=3n2,Sn+1+Sn=3(n+1)2.所以an+1+an=6n+3.由此能够推导出数列{an+2-an}(n≥2)是常数数列.
(2)由题设条件知a2=12-2a.a3=3+2a,数列{a2k}和{a2k+1}分别是以a2,a3为首项,6为公差的等差数列.由此能够推导出bn是数列{an}中的第6×7n-1项.
解答:解:(1)当n≥2时,由已知得Sn2-Sn-12=3n2an
因为an=Sn-Sn-1≠0,所以Sn+Sn-1=3n2.①
于是Sn+1+Sn=3(n+1)2.②
由②-①得:an+1+an=6n+3.③
于是an+2+an+1=6n+9.④
由④-③得:an+2-an=6.⑤
即数列{an+2-an}(n≥2)是常数数列.
(2)由①有S2+S1=12,所以a2=12-2a.
由③有a3+a2=15,所以a3=3+2a,
而⑤表明:数列{a2k}和{a2k+1}分别是以a2,a3为首项,6为公差的等差数列.
所以a2k=a2+(k-1)×6=6k-2a+6,a2k+1=a3+(k-1)×6=6k+2a-3,k∈N*.
由题设知,bn=18×7n-1.当a为奇数时,a2k+1为奇数,而bn为偶数,
所以bn不是数列{a2k+1}中的项,bn只可能是数列{a2k}中的项.
若b1=18是数列{a2k}中的第k0项,
由18=6k0-2a+6得a=3k0-6,取k0=3,得a=3.
此时a2k=6k,由bn=a2k得18×7n-1=6k,k=3×7n-1∈N*,
从而bn是数列{an}中的第6×7n-1项.
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}中,a3=-5,a6=1,此数列的通项公式为
 
,设Sn是数列{an}的前n项和,则S8等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}与{bn}满足关系,a1=2a,an+1=
1
2
(an+
a2
an
),bn=
an+a
an-a
(n∈N+,a>0)
(l)求证:数列{log3bn}是等比数列;
(2)设Sn是数列{an}的前n项和,当n≥2时,Sn与(n+
4
3
)a
是否有确定的大小关系?若有,请加以证明,若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是数列{an} 的前n项和,若
S2nSn
(n∈N*)
是非零常数,则称数列{an} 为“和等比数列”.
(1)若数列{2bn}是首项为2,公比为4的等比数列,则数列 {bn}
 
(填“是”或“不是”)“和等比数列”;
(2)若数列{cn}是首项为c1,公差为d(d≠0)的等差数列,且数列 {cn} 是“和等比数列”,则d与c1之间满足的关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是数列{an}的前n项和,且点(n,Sn)在函数y=x2+2x上,
(1)求数列{an}的通项公式;
(2)已知bn=2n-1,Tn=
1
a1b1
+
1
a2b2
+…+
1
anbn
,求Tn

查看答案和解析>>

同步练习册答案