分析 (1)连接BD交AC于F,连接EF,利用三角形的中位线定理证明EF∥PB,再证明PB∥平面AEC;
(2)利用线面垂直的定义得出PA⊥AC,再证明AC⊥平面PAB与平面EAC⊥平面PAB.
解答 证明:(1)如图所示,![]()
连接BD交AC于F,连接EF,
在△DPB中,EF为中位线,
∴EF∥PB;
又PB?平面EAC,EF?平面EAC,
∴PB∥平面AEC;
(2)∵PA⊥平面ABCD,AC?平面ABCD,
∴PA⊥AC;
又AB⊥AC,PA∩AB=A,
∴AC⊥平面PAB;
又AC?平面EAC,
∴平面EAC⊥平面PAB.
点评 本题考查了空间中的平行与垂直关系的应用问题,也考查了逻辑推理与证明能力,是中档题目.
科目:高中数学 来源: 题型:选择题
| A. | 2.4元 | B. | 2.8元 | C. | 3.2元 | D. | 4元 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | R | B. | (-∞,-1]∪[1,+∞) | C. | (-∞,1] | D. | [-1,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(4)<f(-2)<f(1) | B. | f(1)<f(-2)<f(4) | C. | f(-2)<f(1)<f(4) | D. | f(4)<f(1)<f(-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a∥α,a∥b,b∥c,则c∥α | B. | 若a?α,b?β,α⊥β,则a⊥b | ||
| C. | 若a⊥α,a⊥b,b⊥c,则c⊥α | D. | 若α∥β,a?α,则a∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com