精英家教网 > 高中数学 > 题目详情
函数f(x)=xcosx2在区间[0,4]上的零点个数为( )
A.4
B.5
C.6
D.7
【答案】分析:令函数值为0,构建方程,即可求出在区间[0,4]上的解,从而可得函数f(x)=xcosx2在区间[0,4]上的零点个数
解答:解:令f(x)=0,可得x=0或cosx2=0
∴x=0或x2=,k∈Z
∵x∈[0,4],则x2∈[0,16],
∴k可取的值有0,1,2,3,4,
∴方程共有6个解
∴函数f(x)=xcosx2在区间[0,4]上的零点个数为6个
故选C
点评:本题考查三角函数的周期性以及零点的概念,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有一学生对函数f(x)=xcosx进行了研究,得到如下五条结论:①函数f(x)在(一π,0)上单调递增,在(0,π)上单调递减;
②存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立;
③函数y=f(x)图象的一个对称中心是(
π2
,0)

④函数y=f(x)的图象与x轴有无穷多个公共点,且任意相邻两公共点间的距离相等;
⑤函数y=f(x)的图象与直线.y=x有无穷多个公共点,且任意相邻两公共点间的距离相等;其中正确结论的序号是
②⑤
②⑤
.(写出所有你认为正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=xcosx+1,x∈(-5,5)的最大值为M,最小值为m,则M+m等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学对函数f(x)=xcosx进行研究后,得出以下五个结论:
①函数y=f(x)的图象是中心对称图形;
②对任意实数x,f(x)≤|x|均成立;
③函数y=f(x)的图象与x轴有无穷多个公共点,且任意相邻两点的距离相等;
④函数y=f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两点的距离相等;
⑤当常数k满足|k|>1时,函数y=f(x)的图象与直线y=kx有且仅有一个公共点.其中所有正确结论的序号是
①②④⑤
①②④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xcosx,则f′(
π2
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蚌埠模拟)某同学对函数f(x)=xcosx进行研究后,得出以下四个结论:
①函数y=f(x)的图象是中心对称图形;
②对任意实数x,|f(x)|≤|x|均成立;
③函数y=f(x)的图象与x轴有无穷多个公共点,且任意相邻两公共点间的距离相等;
④函数y=f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两公共点间的距离相等;
其中所有正确结论的序号是
①②④
①②④

查看答案和解析>>

同步练习册答案