精英家教网 > 高中数学 > 题目详情
计算:已知?ABCD中,
AC
=
m
BD
=
n
,试用
m
n
表示
AB
AD
分析:由?ABCD中,
AC
=
m
BD
=
n
,利用向量的加法和减法的几何意义建立方程组,由此能用
m
n
表示
AB
AD
解答:解:∵?ABCD中,
AC
=
m
BD
=
n

AB
+
AD
=
m
AD
-
AB
=
n

解得
AD
=
1
2
(
m
+
n
)
AB
=
1
2
(
m
-
n
)

点评:本题考查向量加减混合运算及其几何意义,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.
(1)判断与操作:
如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.
(2)探究与计算:
已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.
(3)归纳与拓展:
已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).精英家教网

查看答案和解析>>

科目:高中数学 来源:北京高考真题 题型:解答题

如图,在多面体ABCD-A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,上、下底面矩形的长、宽分别为c,d与a,b且a>c,b>d,两底面间的距离为h。
(1)求侧面ABB1A1与底面ABCD所成二面角正切值;
(2)在估测该多面体的体积时,经常运用近似公式V=S中截面·h来计算,已知它的体积公式是 (S上底面+4S中截面+S下底面),试判断V与V的大小关系,并加以证明。

查看答案和解析>>

科目:高中数学 来源:北京高考真题 题型:解答题

如图,在多面体ABCD-A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E,F两点,上、下底面矩形的长、宽分别为c,d与a,b且a>c,b>d,两底面间的距离为h,
(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角的大小;
(Ⅱ)证明:EF∥面ABCD;
(Ⅲ)在估测该多面体的体积时,经常运用近似公式V=S中截面·h来计算。已知它的体积公式是 V=(S上底面+4S中截面+S下底面),试判断V与V的大小关系,并加以证明。
(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面)

查看答案和解析>>

科目:高中数学 来源: 题型:

一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若,则称矩形ABCD为2阶奇异矩形.

(1)判断与操作:

如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.

(2)探究与计算:

已知矩形ABCD的一边长为20,另一边长为< 20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出的值.   

(3)归纳与拓展:

已知矩形ABCD两邻边的长分别为bcc),且它是4阶奇异矩形,求bc(直接写出结果).

查看答案和解析>>

同步练习册答案