精英家教网 > 高中数学 > 题目详情
如图,已知四边形为梯形, ,四边形为矩形,且平面平面,点的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面
(Ⅲ)求三棱锥的体积.
(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)

试题分析:(Ⅰ)取中点,可以证明四边形为平行四边形,即,∴∥平面
(Ⅱ)证明平面即可;(Ⅲ)改变四面体(三棱锥)的顶点,取C即可;或者利用比例.
试题解析:(Ⅰ)取中点,连

为对角线的中点,∴,且
∴四边形为平行四边形,即;或者可以采用比例的方法求解.
又∵平面平面,∴∥平面.             4分
(Ⅱ)∵四边形为矩形,且平面平面,∴平面,∴
∵四边形为梯形,,且,∴
又在中,,且,∴,∴
于是在中,由及余弦定理,得
,∴.∴平面
又∵平面,∴平面平面.                   9分
(Ⅲ)作,垂足为,由平面平面平面
易求得,所以三棱锥的体积为
.       13分.
【法二】连接,则三点共线,故


练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面平面是正方形,,且分别是线段的中点.

(1)求证:平面
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱的底面是直角三角形, ,侧棱与底面所成角为,点在底面上的射影落在上.

(1)求证:平面
(2)若,且当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,,D是AC的中点.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 点.
(I)求证:平面PBD丄平面PAC;
(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面,四边形中,.
(Ⅰ)求证:平面平面
(Ⅱ)设
(ⅰ) 若直线与平面所成的角为,求线段的长;
(ⅱ) 在线段上是否存在一个点,使得点到点的距离都相等?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形中,

(1)点的中点,点的中点,将分别沿折起,使两点重合于点。求证:
(2)当时,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知棱柱的底面是菱形,且为棱的中点,为线段的中点,

(Ⅰ)求证:
(Ⅱ)判断直线与平面的位置关系,并证明你的结论;
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

同步练习册答案