精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1
2
-
1
2x+1

(1)证明:函数f(x)是奇函数;
(2)证明:函数f(x)在R上是增函数;
(3)求函数f(x)在x∈[0,1]上的值域.
考点:函数奇偶性的判断,函数的值域,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)根据函数的奇偶性的定义即可证明函数f(x)是奇函数;
(2)利用函数单调性的定义即可证明函数f(x)在R上时增函数;
(3)利用函数的单调性即可求函数f(x)在x∈[0,1]上的值域.
解答: 解:(1)∵f(x)=
1
2
-
1
2x+1

∴f(-x)+f(x)=
1
2
-
1
2x+1
+
1
2
-
1
2-x+1
=1-
1
2x+1
-
2x
1+2x
=1-1=0,
即f(-x)=-f(x),
∴函数f(x)在定义域上是奇函数.
(2)设x1<x2
则f(x1)-f(x2)=
1
2
-
1
2x1+1
-(
1
2
-
1
2x2+1

=
1
2x2+1
-
1
2x1+1
=
2x1-2x2
(2x1+1)(2x2+1)

∵x1<x2
则2x1-2x2<0,2x1+1>0,2x2+1>0
∴f(x1)-f(x2)<0
∴f(x1)<f(x2
即函数f(x)在R上是单调递增函数.
(3)由(2)知函数f(x)R上单调递增,
则f(x)在[0,1]上单调递增,
f(0)=0,f(1)=
1
6

即0≤f(x)≤
1
6

即函数的值域为[0,
1
6
]
点评:本题考查函数奇偶性的判断,考查函数单调性的判断与证明,考查分析与推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

各项均为正数的等比数列{an}中,a2a5a8=8,则log2a4+log2a6=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx
(其中a>0,e≈2.7).
(Ⅰ)当a=1时,求函数f(x)在[
1
2
,2]
上的最大值和最小值;
(Ⅱ)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(Ⅲ)求证:对于任意大于1的正整数n,都有lnn>
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x(1+alnx)
x-1
(x>1)

(Ⅰ)若a≥0,讨论g(x)=(x-1)2f′(x)的单调性;
(Ⅱ)当a=1时,若f(x)>n恒成立,求满足条件的正整数n的值;
(Ⅲ)求证:(1+1×2)•(1+2×3)…[1+n(n+1)]>e2n-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
x
lnx
,f(x)=x(2-a)
1
g(x)
+2ax+
1
x
(a<0).
(Ⅰ)求函数g(x)在(e,g(e))处的切线方程;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)对于任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln3)a-21n3>|f(x1)-f(x2)|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|y=log2(x-2)},P={x|y=
3-x
},则“x∈M,或x∈P”是“x∈(M∩P)”的什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sinφcos2x+cosφsin2x-sinφ(0<φ<π)在x=
π
6
时取得最大值.
(1)求函数f(x)的解析式及最小正周期;
(2)若函数g(x)的图象与函数f(x)的图象关于直线x=
π
12
对称,求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行程序框图,如果输入a=5,那么输出n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-3cos(
1
2
x+
π
4
)的振幅、周期依次分别为
 

查看答案和解析>>

同步练习册答案