精英家教网 > 高中数学 > 题目详情
已知α、β都是锐角,sinα=
4
5
,cos(α+β)=
5
13
,则sinβ
的值为(  )
分析:由已知中α、β都是锐角,sinα=
4
5
,cos(α+β)=
5
13
,我们根据同角三角函数关系公式,可以求出cosα,sin(α+β),代入两角差的正弦函数公式,即可求出答案.
解答:解:∵α、β都是锐角,
又∵sinα=
4
5
,cos(α+β)=
5
13

∴cosα=
3
5
,sin(α+β)=
12
13

∴sinβ=sin[(α+β)-α]=sin(α+β)•cosα-cos(α+β)•sinα=
12
13
3
5
-
5
13
4
5
=
16
65

故选C
点评:本题考查的知识点是同角三角函数的基本关系公式,两角差的正弦函数公式,其中根据已知条件求出cosα,sin(α+β),为两角差的正弦函数公式的使用准备好所有的数据是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科做)已知A、B都是锐角,且A+B
π2
,(1+tanA)(1+tanB)=2,求证A+B=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:044

已知ab都是锐角,且3sin2a+2sin2b=1,3sin2a-3sin2b=0。求证:

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知ab都是锐角,且3sin2a+2sin2b=13sin2a-3sin2b=0。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科做)已知A、B都是锐角,且A+B
π
2
,(1+tanA)(1+tanB)=2,求证A+B=45°.

查看答案和解析>>

科目:高中数学 来源:2005-2006学年广东省广州113中学高二(下)3月月考数学试卷(解析版) 题型:解答题

(文科做)已知A、B都是锐角,且A+B,(1+tanA)(1+tanB)=2,求证A+B=45°.

查看答案和解析>>

同步练习册答案